

 Table of Contents

 	

 Introduction

 1.1

 	

 Regular Expressions

 1.2

 	

 URL Mapping

 1.3

 	

 Introduction to mod_rewrite

 1.4

 	

 RewriteRule

 1.5

 	

 Rewrite Logging

 1.6

 	

 RewriteRule flags

 1.7

 	

 RewriteCond

 1.8

 	

 RewriteMap

 1.9

 	

 Proxying with mod_rewrite

 1.10

 	

 Virtual Hosts with mod_rewrite

 1.11

 	

 Access Control with mod_rewrite

 1.12

 	

 If, and other Configuration Configuration

 1.13

 	

 Content Munging Modules

 1.14

 	

 Appendix

 1.15

 	

 INDEX

 1.16

 Introduction

 mod_rewrite is one of the most powerful, and least understood, of the
modules that are provided with the Apache HTTP Server. It is frequently
misused to do things that can be done so much better other ways.

Thousands of examples are posted daily on various
websites, showing beginners how to do things with mod_rewrite, and,
unfortunately, the vast majority of them are wrong in various ways,
subtle or grevious, due to misunderstandings of how mod_rewrite works,
or how regular expressions work.

This book is intended to help you understand mod_rewrite deeply, so
that you know when and how to use it, as well as when not to use it, and
what to use instead.

About This Book

The first incarnation of this book,
The Definitive Guide to Apache mod_rewrite - http://drbacchus.com/book/rewrite,
was published in 2006.
Since then, so much has changed that while that book is still useful,
it's far from complete.

In February of 2012, Apache httpd version 2.4 was released, with a huge
number of enhancements and changes. Many of the things that people have
been using mod_rewrite for now have better solutions. Meanwhile,
mod_rewrite itself improved quite a bit, too, and can do many new
things.

This book still focuses primarily on mod_rewrite, but will touch on
many of the surrounding topics and modules.

That said, the scope of this book has expanded (since the earlier
incarnation) to include not merely URL
rewriting, but also methods for munging (modifying) content, and
dynamic conditional configuration. In many cases, these techniques make
mod_rewrite unnecessary, or, at least, provide easier alternatives, so
they fit the scope of the book very well.

These techniques include mod_substitute, mod_proxy_html, the Define
directive, the <If> container, mod_macro, and many more. Along the
way, we'll also discuss the various parts of URL mapping, the
understanding of which allows you to avoid using these more complicated
techniques.

How this book is organized

This book consists of 13 chapters. Depending on your level of existing
expertise, some of them can be safely skipped.

Chapter 1 - Regular Expressions - This chapter gives an
introduction to regular expressions, which are the language of
mod_rewrite.

Chapter 2 - URL Mapping - URL rewriting is a portion of a
larger topic called URL mapping - the process by which Apache httpd
translates a requested URL into an actual resource that it will serve.

Chapter 3 - mod_rewrite - An introduction to mod_rewrite,
covering some of the configuration directives that need to be set up
before you start rewriting.

Chapter 4 - RewriteRule - The RewriteRule directive is the
one you'll be using most often. This chapter covers its syntax and
usage.

Chapter 5 - Rewrite Logging - The rewrite log is a great
debugging tool, and also a good way to learn about how mod_rewrite
thinks about things.

Chapter 6 - RewriteRule flags - Flags modify the behavior of
RewriteRule. They've been introduced in the previous chapter, but this
chapter covers each flag in detail, with examples.

Chapter 7 - RewriteCond - RewriteCond allows you to put
conditions on the running of a particular RewriteRule.

Chapter 8 - RewriteMap - The RewriteMap directive allows
you to craft your own RewriteRule logic and lookup tables.

Chapter 9 - Proxying with mod_rewrite - RewriteRule's [P] flag lets you pass
a request through a proxy. This chapter digs into that in greater
detail.

Chapter 10 - Virtual hosts with mod_rewrite - Using RewriteRule to manage virtual
hosts.

Chapter 11 - Access control with mod_rewrite - Using RewriteRule to control or
restrict access to resources.

Chapter 12 - Configurable Configuration - New in version 2.4
of the web server is a class of directives that let you add intelligence
and request-time decisions to the configuration. These techniques
replace many of the things that people used to use mod_rewrite for.

Chapter 13 - Content Modification Modules - In this chapter, we
discuss rewriting content sent to the client, which is not something
that mod_rewrite does.

Other Sources of Wisdom

A brief word about the documentation. The official docs, at http://httpd.apache.org/docs/current,
are great, and are the work of many dedicated people. I'm one of many. This book is
intended to augment those docs, and not replace them. If it appears sometimes that
I have copied shamelessly from the documentation, I humbly ask you to remember that
I participated in writing those docs, and the edits flowed both directions -- that
is, sometimes it was the docs that shamelessly copied from the book.

This book does not attempt to be a comprehensive book about the
Apache web server. For that, I encourage you to look the documentation
and also at my other book,
Apache Cookbook, Third Edition, by Rich Bowen and Ken Coar,
which should be available around the
same time that this book is published.

You should also acquire a copy of Jeffrey Friedl's excellent book,
Mastering Regular Expressions -
http://shop.oreilly.com/product/9780596528126.do While the book is
several years old, it is still the best book on the topic.

Technical details

This book was written in vim

https://www.vim.org/

and built using gitbook.

https://toolchain.gitbook.com/

Previous incarnations were written in LaTeX,
ReStructuredText, AsciiDoc, and who knows what else. There always seems
to be a new book format out there. It's exhausting.

You can always obtain the most recent version of
the book at http://mod-rewrite.org/, and you'll usually be able to buy a
fairly recent version in the Amazon Kindle store. Some day, there will
hopefully be a printed version, too.

Contact information, and errata reporting

If you'd like to get involved in the creation of this book, or if you'd like to
tell me about something that needs fixed, Go to GitHub -
https://github.com/rbowen/mod_rewrite_book - and either submit pull requests
or open a ticket. If you don't know what that means, you are welcome to
submit errata to rbowen@rcbowen.com, and some day there will be a handy
way to do this on the website. Not today.

This book is a work in progress. If you purchased the book in electronic
form, you should be eligible to receive updates from wherever you bought
it. If you're not, send me your email receipt rbowen@rcbowen.com,
and I'll send you an updated version.

About the Author

Rich Bowen has been involved on the Apache http server documentation
since about 1998. He is also the author of Apache Cookbook, and The
Definitive Guide to Apache mod_rewrite. You can frequently find him in
#httpd, on irc.freenode.net. under the name of DrBacchus or rbowen.

Rich works at Red Hat, in the OSAS (Open Source and Standards) group,
where he is an Open Source Community Manager. See
http://community.redhat.com/ for details.

He lives in Lexington, Kentucky, with his wife and kids.

Acknowledgements

Thanks to fajita, and the other regulars on #httpd (on the irc.freenode.net
network). fajita is my research assistant, and knows more than everyone else on
the channel put together. And the folks on #ahd who keep me sane. Or insane.
Depending on how you measure. A warm hog to each of you.

None of this would be possible without mod_rewrite
itself, so a big thank you to Ralf Engelschall for creating it, and
all the many people who have worked on the code and documentation since
then.

Finally, a thank you to my muses, Rhi, Z, and E. And to Maria, who makes
everything beatiful. And so that's all right, Best Beloved, do you see?

 Regular Expressions

Regular Expressions

Much of the content in this book requires that you have some mastery
of regular expressions. Indeed, in my years of teaching mod_rewrite,
it has been my observation that most people don’t find mod_rewrite hard at
all: they’re just intimidated by regular expressions.

There is one excellent book about regular expressions, and if you want
to become a regular expression (or "regex") guru, you should get it. That
book is Mastering Regular Expressions http://regex.info/book.html by
Jeffrey Friedl.

If you just want to know enough about regex to master mod_rewrite, read
this chapter a few times, and that should be sufficient.

The goal of this chapter is to introduce the building blocks - the basic
vocabulary - and then discuss some of the arcana of crafting your own
regular expressions, as well as reading those that others have bequeathed
to you. If you are already reasonably familiar with regex syntax, you
can safely skip this chapter.

The Building Blocks

Regular expressions are a means to describe a text pattern (technically,
it’s any data, but in the context of Apache httpd, we’re primarily
interested in text as it appears in URLs), so that you can look for
that pattern in a block of data. The best way to read any regular
expression is one character at a time, so you need to know what
each character represents.

These are the basic building blocks that you will use when writing regular expressions. If
you don’t already know regex syntax, you’ll want to stick a bookmark on this page, since you’ll be
referring to it until you become familiar with these characters. The
Regular Expression Vocabulary table is your key to
translating a line of seemingly random characters into a meaningful pattern. The table will be
followed by further explanations and examples for each of the items in the table.

Table 1. Regular Expression Vocabulary

	Character
	Meaning

	.

	Any character

	\

	Escapes a character that has a special meaning. Thus, \. means a literal . character. You can match a literal \ character by using \\. Additionally, placing \ in front of a regular character can add a special meaning to that character. For example, \t means a tab character. See Escaping characters for more detail on that.

	^

	An anchor which insists that the pattern start at the beginning of the string. ^A means that the string must start with A.

	$

	An anchor which insists that the string ends with the specified pattern. X$ means that the string must end with X.

	+

	Match the previous thing one or more times. So a+ means one or more a’s.

	*

	Match the previous thing zero or more times. This is the same as +, except that it’s also acceptable if the thing wasn’t there at all.

	?

	Match the previous thing zero or one times. In other words, it makes it optional. It also makes the * and + characters non-greedy. See Greedy Matching.

	{n,m}

	Indicates that the previous thing should match at least n, and not more than m times. For example, a{2,7} matches at least 2, and not more than 7, occurrences of the letter a

	()

	Provides grouping and capturing functions. Grouping means treating more than one character as though they were a single unit. You can apply repetition characters to a group created in this way.
 Capturing means remembering the thing that matched, so that we can use it again later. This is called a 'backreference.'

	[]

	Called a "character class," this matches only one of the contained characters. For example, [abc] matches a single character which is either a or b or c.

	^

	Negates a match within a character set. (Remember that outside of a character class, it means something else. See above.) Thus, [^abc] matches a single character which is neither a nor b nor c.

	!

	Placed on the front of a regular expression, this means "NOT". That is, it negates the match, and so succeeds only if the string does not match the pattern.

That’s not all there is to regular expressions, but it’s a really good starting point.
Each regular expression presented in this book will have an explanation of what it’s doing,
which will help you see in practical examples what each of the above characters actually ends
up meaning in the wild. And, in my experience, regular expressions are understood much
more quickly via examples rather than via lectures.

What follows is a more detailed explanation of each of the items in the table above, with
examples.

Matching anything

The . character in a regular expression matches any character. For example,
consider the following pattern:

a.c

That pattern matches a string containing a, followed by any character, followed by c. So,
that pattern matches the strings "abc", "ancient", and "warcraft", each of which contain
that pattern. It does not match "tragic", on the other hand, because there are two characters
between the a and the c. That is, the . by itself, matches a single character only.

The . character is very frequently used in connection with
 to mean "match everything". You’ll see the (.)
pattern appearing often throughout this book, and throughout examples
that you see online. And while it’s often what you want, it’s just as
often used incorrectly. Remember that while (.*) matches any
string, so will the simpler and faster pattern ^ because every
string has a start (even an empty string) and so ^ matches it.

It’s faster, too, because while (.) has to match all the way out to
the end of the string, ^ only has to note that the string has a
beginning, and then it is done. Note also that the pattern (.)
has parenthesis and therefore captures the matched string into the
variable $1. If you’re not planning to use $1 in a later
substitution, then this, in addition to being a waste of computation
cycles, is a waste of memory.

While considerations of this kind probably won’t save you a noticeable
amount of time, getting into the habit of writing efficient regular
expressions will, in the long run, not only save you these small
amounts, but will result in rules that are easier to understand and
easier to maintain, because they match only what you’re interested in,
and nothing more.

Escaping characters

The backslash, or escape character, either adds special meaning to a character, or removes it,
depending on the context. For example, you’ve already been told that the . character has
special meaning. But if you want to match the literal . character, then you need to escape it
with the backslash. So, while . means "any character," \. means a literal "." character.

Conversely, some characters gain special meaning when prefixed by a \ character. For example,
while s means a literal "s" character, \s means a "whitespace" character. That is, a space or a tab.

The Metacharacter table below lists useful escape characters that you’ll
see throughout the book and can be used as shorthand for more
verbose patterns.

Table 2. Metacharacters

	Character
	Meaning

	\d

	Match any character in the range 0 - 9

	\D

	Match any character NOT in the range 0 - 9

	\s

	Match any whitespace characters (space, tab etc.).

	\S

	Match any character NOT whitespace (space, tab).

	\w

	Match any character in the range 0 - 9, A - Z and a - z

	\W

	Match any character NOT the range 0 - 9, A - Z and a - z

	\b

	Word boundary. Match any character(s) at the beginning (\babc) and/or end (abc\b) of a word, thus \bcow\b will match cow but not cows, but \bcow will match cows.

	\B

	Not a word boundary. Match any character(s) NOT at the beginning(\Babc) and/or end (cow\B) of a word, thus \Bcow\B will match scows but not cows, but cow\B will match coward.

	\t

	Match a tab character

	\n

	Match a newline character

	\x

	Matches a character with a particular hex code. For example, \x5A would match a Z, which has a hex code of 5A.

The term "metacharacter" is often also applied to characters such as . and $
which have special meanings within regular expressions.

Anchoring text

Referred to as anchor characters, these ensure that a string starts with, or ends with, a
particular character, or sequence of characters. Since this is a very common need, these are
included in this basic vocabulary. Consider the examples in the `anchor examples table`_

Table 3. Anchor examples

	Example
	Meaning

	^/

	This matches any string that starts with a slash

	.jpg$

	This pattern matches any string that ends with .jpg.

	/$

	Matches a string that starts with, and ends with, a slash. That is, it will only match a string that is a single slash, and nothing else.

	^$

	Matched an empty string - that is, a string that has nothing between its start and its end.

Remember, as you craft your regular expressions, that they are, by
default, a substring match. Which is to say, a pattern of cow
matches cow, scow, coward, and pericowperitis, because they all
contain "cow" somewhere in them. Using the anchor characters allow you
to be more specific as to what you wanted to match. The \b
metacharacter, introduced above, can also be useful in some contexts,
but perhaps less so when you’re dealing with URLs.

Matching one or more characters

The + character allows a pattern or character to match more than once. For example, the
following pattern will allow for common misspellings of the word "giraffe".

giraf+e+

This pattern will allow one or more f’s, as well as one or more e’s. So it matches "girafe", "giraffe", and "giraffee". It will also match "girafffffeeeeee".

Be sure to use + rather than * when you want to ensure non-empty matches.

Matching zero or more characters

The * character allows the previous character to match zero or more times. That is to say, it’s
exactly the same as +, except that it also allows for the pattern to not match at all. This is
often used when + was meant, which can result in some confusion when it matches an empty
string. As an example, we’ll use a slight modification of the pattern used in the above
section:

giraf*e*

This pattern matches the same strings listed above ("giraffe", "girafe" and "giraffee") but will also match the string "giraeeeee", which contains zero "f" characters, as well as the string "gira", which contains zero "f" characters and zero "e" characters.

Most commonly, you’ll see it used in conjunction with the . character, meaning "match anything." Frequently, in that case, the person using it has forgotten that regular expressions are substring matches. For example, consider this pattern:

.*\.gif$

The intent of that pattern is to match any string ending in .gif. The $ insists that it is at the
end of the string, and the \ before the . makes that a literal . character, rather than the wildcard
. character. In this particular case, the .* was there to mean "starts with anything," but is
completely unnecessary, and will only serve to consume time in the matching process.

A more useful example of the * character is one which checks for a comment line in an
Apache configuration file. The first non-space character needs to be a #, but the spaces are
optional:

^\s*#

This pattern, then, matches a string that might (but doesn’t have to) begin with
whitespace, followed by a . This ensures that the first non-space character of the line is a .

Repetition quantifiers

If you want to match a particular number of times, you can use the
{n,m} quantifier to specify the range of times you wish to match.
The possibilities of how you can specify this are shown in the table
below.

Table 4. Repition quantifiers

	Pattern
	Meaning

	{n}

	Match exactly n times

	{n,}

	Match at least n times

	{n,m}

	Match at least n times, but not more than m times

These repitition quantifiers may be applied to a single character, or to
a grouping. For example:

\d{1,3}

will match 1, 2, or 3 digits.

[abc]{2,5}

Will match anywhere from 2 to 5 instances of a, b, or c.

Greedy Matching

In the case of all of the repetition characters above, matching is greedy. That is, the regular
expression matches as much as it possibly can. That is, if you apply the regular expression
a+ to the string aaaa, matches the entire string, and not be satisfied by just the first
a. This is particularly important when you are using the .* syntax, which can
occasionally match more than you thought it would. I’ll give some examples of this after
we’ve discussed a few more metacharacters.

On the other hand, if you wish for matches to not be greedy, you can
offset the greedy nature of the repetition character by putting a ?
after it.

Consider, for example, a scenario where I want to match everything between two
slashes in a URL. I’ll be applying the regular expression to the URI
/one/two/three/, and I’ll try a greedy, and not-greedy, regular
expression. The `table of greedy examples`_ shows the results of these
patterns.

Table 5. Examples of greedy matching

	Pattern
	Matches

	/(.*)/

	one/two/three

	/(.*?)/

	one

The first regex is greedy, and matches as much as it possibly can, going
out to the last slash. The second is non-greedy, and so stops as early as it can, when it encounters the second slash.

Making a match optional

The ? character makes a single character match optional. This is extremely useful for
common misspellings, or elements that may, or may not, appear in a string. For example, you
might use it in a word when you’re not sure whether it’s supposed to be hyphenated:

e-?mail

The above pattern matches both "email" and "e-mail", so that either
spelling will be accepted. Likewise, you could use:

colou?r

to match the word color both as it is spelled in the USA, and the way
that it is spelled in the rest of the world.

Additionally, the ? character turns off the "greedy" nature of the +
and characters. Thus, putting a ? after a + or a
 will make it match as little as it possibly can. See Greedy Matching.

Further examples of the greedy vs. non-greed behavior will follow once we have learned
about backreferences.

Grouping and capturing

Parentheses allow you to group several characters as a unit, and also to capture the results of
a match for later use. The ability to treat several characters as a unit is extremely useful in
pattern matching. Think of it as combining several atoms into a single molecule. For example, consider this example:

(abc)+

This will look for the sequence "abc" appearing one or more times, and so would match the string "abc" and the string "abcabc".

Backreferences

Even more useful is the "capturing" functionality of the parentheses. Once a pattern has
matched, you often want to know what matched, so that you can use it later. This is usually
referred to as "backreferences."

For example, you may be looking for a .gif file, as in the example above, and you really
want to know what .gif file you matched. By capturing the filename with parentheses, you can
use it later on:

(.*\.gif)$

In the event that this pattern matches, we will capture the matching value in a special
variable, $1. (In some contexts, the variable may be called %1 instead.) If you have more
than one set of parentheses, the second one will be captured to the variable $2, the third to $3,
and so on. Only values up through $9 are available, however. The reason for this is that $10
would be ambiguous. It might mean $1, followed by a literal zero (0), or it might mean $10.
Rather than providing additional syntax to disambiguate this term, the designer of
mod_rewrite instead chose to only provide backreferences through $9.

The exact way in which you can exploit this feature will be more obvious later, once we
start looking at the RewriteRule directive in :ref:`RewriteRule`

Consider these two patterns, applied to the string "canadian".

c(.*)n
c(.*?)n

The first pattern will return with a value of "anadia" in $1, since it will match as much as it possibly can between the first c and the last n it sees. The second, on the other hand, will return
with $1 set to "a", since it is non-greedy, and so stops at the first n it sees.

TODO Recommend the correct regex tool

It is instructive to acquire a tool such as Regex Coach, or Rebug, mentioned in the Regex tools section below, and feed them these patterns and strings, to watch them match the different parts
of the string. Mastering Regular Expressions also has a very complete treatment of
backreferences, greedy matching, and what actually happens during the matching phase.

Character Classes

A character class allows you to define a set of characters, and match any one of them. There
are several built-in character classes, like the \s metacharacter that you saw above. Using the [] notation lets you define your own
custom character classes. As a very simple example, consider the following:

[abc]

This character class matches the letter a, or the letter b, or the letter c. For example, if
we wanted to match the subset of users whose usernames started with one of those letters, we
might look for the pattern:

/home/([abc].*)

This combines several of the characters that have been described above. It ends up matching a
directory path for that subset of users, and the username ends up in the $1 variable. Well, actually, not quite, as we’ll see in a minute, but almost.

The character class syntax also allows you to specify a range of characters fairly easily.
For example, if you wanted to match a number between 1 and 5, you can use the character class [1-5].

Within a character class, the ^ character has special meaning, if it is the first character in
the class. The character class [^abc] is the opposite of the character class [abc]. That is, it
matches any character which is not a, b, or c.

Which brings us back to the example above, where we are attempting to match a
username starting with a, b, or c. The problem with the example is that the * character is
greedy, meaning that it attempts to match as much as it possibly can. If we want to force it to
stop matching when it reaches a slash, we need to match only "not slash" characters:

	

	
/home/([abc][^/]+)

I’ve replaced the . with [^/]+ which has the effect that, rather than matching any
character, it matches only not-slash characters. In other words, it will only match up to a
slash, or the end of the string, whichever comes first. Also, I’ve used + instead of , since
one-character usernames are typically not permitted. Now, $1 will contain the username,
whereas, before, it could possibly have contained other directory path components after the
username.

Negation

	
index:: Negation

	
index:: !

Finally, if you wish to negate an entire regular expression match, prefix it with !. This is not
consistent across all regular expression implementations, but can be used in a
number of them. A very common use of this in the context of rewrite rules will be to indicate
that you want a pattern to apply to all directories except for one. So, for example, if we
wanted to exclude the /images directory from consideration, we would match the /images
directory, but then negate the match, thus:

	

	
!^/images

This matches any path not starting with /images. We’ll see more of this kind of pattern match especially in the chapter :ref:`Proxying with mod_rewrite`.

Regex examples

	
index:: Examples

	
index:: Regex examples

A few examples may be instructive in your understanding of how regular expressions
work. We’ll start with a few of the cases that you may frequently encounter, and suggest a
few alternate solutions to each.

Email address

	
index:: Email address

We’ll start with a common favorite. You want to craft a regular expression that matches
an email address. The general format of an email address is "something @ something dot something". When you are crafting a regular expression from scratch, it’s good to express the
pattern to yourself in terms like this, because it’s a good start towards writing the expression
itself.

To express this as a regular expression, let’s take the component parts. The catch all
"something" part can likely be expressed as .* and the . and @ parts are literal characters.
So, this gives us a starting point of:

.*@.*\..*

This is a good start, and matches most email addresses. It will probably match all email
addresses. However, it will also match a lot of stuff that isn’t email addresses, like
"@@@.@", "@.com", and "This isn’t an em@il address." So we have to try something a little more specific.

We want to require that the "something" before the @ sign is not zero length, and
contains certain types of characters. For example, it should be alpha-numeric, but may also
contain certain other special characters, like dot, underscore, or dash.

Fortunately, PCRE provides us with a convenient way to say "alpha-numeric
characters,", using a named character class. There are quite a number of these, such as
[:alpha:] to match letters, [:digit:] to match numbers 0 through 9, and [:alnum:] to match
alpha-numeric characters.

Next, we want to ensure that the domain name part of the pattern is alphanumeric too,
except that the top level domain (tld), i.e., the last part of the domain name, must be letters.

And we want to allow an arbitrary number of dots in the hostname, so that "a.com" and
"mail.s.ms.uky.edu" are both valid hostname portions of an email address.
So we can say the above description as:

	

	
^[:alnum:]._-]@(\.)[:alpha:]+$

This is far more specific, and will match most valid email addresses.
However, it will also exclude a few edge-cases, as well as allowing some
things that are not valid addresses, such as invalid domain names.

You should note that this was something of a fool’s errand - there does not exist a regular expression
that matches all possible email addresses. Indeed, I started with
this example to give you a flavor for just how complicated it can be to
craft a pattern for something that is not well defined.

For more discussion of writing regular expressions to match email
addresses, simply search for email regex in your favorite search
engine, and you’ll find many, many articles about how and why it is
impossible.

Phone number

	
index:: Phone number

Next we’ll consider the problem of matching a phone number. This is much harder than it
would at first appear. We’ll assume, for the sake of simplicity, that we’re just trying to match
US phone numbers, which are 10 numbers.

The number consists of three numbers, then three more, then four more. These numbers
may, or may not, be separated by a variety of things. The first three may or may not be
enclosed in parentheses. So we’ll try something like this:

	

	
\(?\d{3}\)?[-.]?\d{3}[-.]?\d{4}

This pattern matches most US phone numbers, in most of the ordinary formats. The
first three numbers may or may not be in parentheses, and the blocks of numbers may or may
not be separated by dashes (-), dots (.) or spaces.

It is still far from foolproof, because users will come up with ways to submit data in
unexpected format.

Let’s go though the rule one piece at a time:

\(? - This sub-pattern represents an optional opening parenthesis. The backslash is
necessary because parentheses already have special meaning in regular
expressions. We want to remove
that special meaning, and have a literal opening parenthesis. The question mark makes this
character optional. That is, the person entering the data may or may not enclose the first three
numbers with parenthesis, and we want to ensure that either one is acceptable.

\d{3} - \d means a digit. (Remember: d for digit.) This can also be written as [:digit:], but the \d notation tends to be more
common, for the simple reason that it’s less to type. The {3} following the \d indicates that
we want to match the character exactly three times. That is, we require three digits in this
portion of the match, or it will return failure.

See the section `Repetition quantifiers`_ for the various syntaxes you
can use to indicate the number of repetitions you want.

\)? - Like the opening parenthesis we started with, this is an optional closing parenthesis.

[-.]? - Another optional character, this allows, but does not require, a dash, a dot, or a
space, to appear between the first three numbers and the next three numbers.

If you discover that your users are separating blocks with, say, an
underscore, you could modify this part of the pattern to be [-._]
instead, to include this new character.

The rest of the expression is exactly the same as what we have already done, except that the last block of numbers contains 4 numbers, rather than three.

The next step in crafting a regular expression is to think of the ways in which your
pattern will break, and whether it is worth the additional work to catch these edge cases. For
example, some users will enter a 1 before the entire number. Some phone numbers will have
an extension number on the end. And that one hard-to-please user will insist on separating the
numbers with a slash rather than one of the characters we have specified. These can probably
be solved with a more complex regex, but the increased complexity comes at the price of
speed, as well as a loss of readability. It took a page to explain what the current regex does,
and that’s at least some indication of how much time it would take you to decipher a regex
when you come back to it in a few months and have forgotten what it is supposed to be
doing.

Matching URIs

Finally, since this is, after all, a book about mod_rewrite, it seems reasonable to give
some examples of matching URIs, as that is what you will primarily be doing for the rest of
the book.

Most of the directives that we will discuss in the remainder of the book, take regular
expressions as one of their arguments. And, much of the time, those regular expressions will
describe a URI, which is the technical term for the resource that was requested from your
server. And most of the time, that means everything after the http://www.domain.com part of the
web address.

I’ll give several common examples of things that you might want to match.

Matching the homepage

Very frequently, people will want to match the home page of the website. Typically, that
means that the requested URI is either nothing at all, or is /, or is some index page such as
/index.html or /index.php. The case where it is nothing at all would be when the requested
address was http://www.example.com with no trailing slash.

First, I’ll consider the case where they request either http://www.example.com or
http://www.example.com/ (ie, with or without the trailing slash, but with no file requested). In
other words, we want to match an optional slash.

As you probably remember from earlier, you use the ? character to make a match
optional. Thus, we have: ^/?$

This matches a string that starts with, and ends with, an optional slash. Or, stated
differently, it matches either something that starts ends with a slash, or something that starts
and ends with nothing.

Next, we introduce the additional complexity of the file name. That is, we want to match
any of the following four strings:

	
The empty string - that is, they requested http://www.example.com with no trailing slash.

	
/ - they requested http://www.example.com/ with a trailing slash.

	
/index.html

	
/index.php

We’ll build on the regex that we had last time, adding these additional requirements:

^/?(index\.(html|php))?$

This isn’t quite right, as you’ll see in a moment, but it’s mostly right. It does, however, introduce a new syntax that hasn’t been mentioned heretofore. That is the | syntax, which has
the fancy name of "alternation" and means "one or the other." So (html|php) means "either 'html' or 'php'."

So, we’ve got a regex that means a string that starts with a slash (optional) followed by
index., followed by either html or php, and that entire string (starting with the index) is also
optional, and then the string ends.

The one problem with this regex is that it also matches the strings 'index.php' and
'index.html', without a leading slash. While, strictly speaking, this is incorrect, in the actual
context of matching a URI, it is probably fine, in most scenarios, to
ignore that particular technicality. Note, however, that there are lots
of people who spend a lot of time trying to figure out how to exploit
technicalities like this, so be careful.

Matching a directory

	
index:: Directory

If you wanted to find out what directory a particular requested URI was in, or, perhaps,
what keyword it started with, you need to match everything up to the first slash. This will
look something like the following:

	

	
/([/]+)

This regex has a number of components. First, there’s the standard ^/ which we’ll see a
lot, meaning "starts with a slash." Following that, we have the character class [^/], which will
match any "not slash" character. This is followed by a + indicating that we want one or more
of them, and enclosed in parentheses so that we can have the value for later observation, in $1.

Matching a filetype

For the third example, we’ll try to match everything that has a particular file extension.
This, too, is a very common need. For example, we want to match everything that is an image
file. The following regex will do that, for the most common image types:

\.(jpg|gif|png)$

Later on, you’ll see how to make this case insensitive, so that files with upper-case file
extensions are also matched.

Regex tools

TODO Ensure that these tools all still exist.

If you’re going to spend more than just a little time messing with regexes, you’re
eventually going to want a tool that helps you visualize what’s going on. There are a number
of them available, each of which has different strengths and weaknesses. You’ll find that
most of the really good tools for regular expression development come out of the Perl
community, where regular expressions are particularly popular, and tend to get used in
almost every program.

Regex Coach

Regex Coach is available for Windows and Linux,
and can be downloaded from http://www.weitz.de/regex-coach.
Regex Coach allows you to step through a regular expression and watch
what it does and does not match. This can be extremely instructive in
learning to write your own regular expressions.

	TODO

	
SCREENSHOT

Regex Coach is free, but it is not Open Source.

Reggy

Reggy is a Mac OS X application that provides a simple interface for
crafting and testing regular expressions. It will identify what parts of
a string are matched by your regular expression.

Reggy is available at http://code.google.com/p/reggy/ and is
licensed under the GPL.

	TODO

	
SCREENSHOT

pcretest

pcretest is a command-line regular expression tester that is available
on most distributions of Linux, where it is usually installed by
default.

In addition to simply telling you whether a particular string matched or
not, it will also tell you what each of the various backreferences will
be set to.

In the SCREENSHOT you can see what each of the various backreferences
will be set to once the regular expression has been evaluated.

TODO: Screen shot

Visual Regexp

Visual Regexp, available at http://laurent.riesterer.free.fr/regexp/, has more features
than the options listed above, and might be a good option once you have
mastered the basics of regular expressions and are ready to move onto
something a little more sophisticated. It shows backreferences, and
offers a wide variety of suggestions to help build a regex.

Visual Regexp is available as a Windows executable or as a Tcl/Tk
script.

	TODO

	
SCREENSHOT

Regular Expression Tester

Rather than being a stand-alone application like the others listed
above, this is a Firefox plugin. It’s available at
https://addons.mozilla.org/en-US/firefox/addon/2077, and, of
course, requires Firefox to work.

Online tools

	
index:: Online regex testers

In addition to these tools, there are many online tools, which you can
use without having to download or install anything. These are of a wide
variety of feature sets and quality, so I’d encourage you to shop around
a little to find one that seems to work well. These appear and disappear
on a weekly basis, and so I can’t promise that these sites will still
be available at the time that you read this, but here are some that are
worth mentioning at the time of writing:

RegExr

	
index:: RegExr

http://gskinner.com/RegExr/ - Includes a variety of pre-defined
character classes, and the ability to save your regular expressions for
later reference. Requires Javascript to use.

Regex Pal

	
index:: Regex Pal

http://regexpal.com/ - Less full-featured than RegExr, but
sufficient for the purpose of crafting and testing regular expressions
for the purpose of mod_rewrite, which doesn’t require replace
functionality or multi-line matches.

RewriteRule generators

You may find various websites that purport to be RewriteRule generators.
I strongly encourage you to avoid these, and instead to learn how to
craft your own rules. I’ve evaluated several of these sites, and every
one has resulted in RewriteRule directives that were either enormously
inefficient, or completely wrong.

Summary

Having a good grasp of Regular Expressions is a necessary prerequisite
to working with mod_rewrite. All too often, people try to build regular
expressions by the brute-force method, trying various different
combinations at random until something seems to mostly work. This
results in expressions that are inefficient and fragile, as well as a
great waste of time, and much frustration.

Keep a bookmark in this chapter, and refer back to it when you’re trying
to figure out what a particular regex is doing.

Other recommended reference sources include the Perl regular expression
documentation, which you can find online at
http://www.perldoc.com/perl5.8.0/pod/perlre.html or by typing
perldoc perlre at your command line, and the PCRE documentation, which
you can find online at http://pcre.org/pcre.txt.

 URL Mapping

URL Mapping

In this chapter, we’ll discuss the various ways that the Apache http
server handles URL Mapping.

When the Apache http server receives a request, it is processed in a
variety of ways to see what resource it represents. This process is
called URL Mapping.

mod_rewrite is part of this process, but will be handled separately,
since it is a large portion of the contents of this book.

The exact order in which these steps are applied may vary from one
configuration to another, so it is important to understand not only the
steps, but the way in which you have configured your particular server.

mod_rewrite

mod_rewrite is perhaps the most powerful part of this process. That is,
of course, why it features prominently in the name of this book. Indeed,
mod_rewrite spans several chapters of this book, and has an entire Part
all its own, part mod_rewrite.

For now, we’ll just say that mod_rewrite fills a variety of different
roles in the URL mapping process. It can, among other things, modify a
URL once it is received, in many different ways.

While this usually happens before the other parts of URL mapping, in
certain circumstances, it can also perform that rewriting later on in
the process.

This, and much more, will be revealed in the coming chapters.

DocumentRoot

The DocumentRoot directive specifies the filesystem directory from which
static content will be served. It’s helpful to think of this as the
default behavior of the Apache http server when no other content source
is found.

Consider a configuration of the following:

DocumentRoot /var/www/html

With that setting in place, a request for
http://example.com/one/two/three.html will result in the file
/var/www/html/one/two/three.html being served to the client with a MIME
type derived from the file name - in this case, text/html.

The DirectoryIndex directive specifies what file, or files, will be
served in the event that a directory is requested. For example, if you
have the configuration:

DocumentRoot /var/www/html
DirectoryIndex index.html index.php

Then when the URL http://example.com/one/two/ is requested, Apache
httpd will attempt to serve the file /var/www/html/index.html and, if
it’s not able to find that, will attempt to serve the file
/var/www/html/index.php.

If neither of those files is available, the next thing it will try to do
is serve a directory index.

Automatic directory listings

The module mod_autoindex serves a file listing for any directory that
doesn’t contain a DirectoryIndex file. (See
DirectoryIndex <directoryindex>.)

To permit directory listings, you must enable the Indexes setting of the
Options directive:

Options +Indexes

See the documentation of the Options
http://httpd.apache.org/docs/current/mod/core.html#options for further
discussion of that directive.

If the Indexes option is on, then a directory listing will be displayed,
with whatever features are enabled by the IndexOptions directive.

Typically, a directory will look like the example shown below.

[image: AutoIndex]

For further discussion of the autoindex functionality, consult the
mod_autoindex documentation at
http://httpd.apache.org/docs/current/mod/mod_autoindex.html.

Future versions of this book will include more detailed information
about directory listings.

Alias

The Alias directive is used to map a URL to a directory path outside of
your DocumentRoot directory.

Alias /icons /var/www/icons

An Alias is usually accompanied by a <Directory> stanza granting httpd
permission to look in that directory. In the case of the above Alias,
for example, add the following:

<Directory /var/www/icons>
 Require all granted
</Directory>

Or, if you’re using httpd 2.2 or earlier:

<Directory /var/www/icons>
 Order allow,deny
 Allow from all
</Directory>

There’s a special form of the Alias directive - ScriptAlias - which has
the additional property that any file found in the referenced directory
will be assumed to be a CGI program, and httpd will attempt to execute
it and sent the output to the client.

CGI programming is outside of the scope of this book. You may read more
about it at http://httpd.apache.org/docs/current/howto/cgi.html

Redirect

The purpose of the Redirect directive is to cause a requested URL to
result in a redirection to a different resource, either on the same
website or on a different server entirely.

The Redirect directive results in a Location header, and a 30x status
code, being sent to the client, which will then make a new request for
the specified resource.

The exact value of the 30x status code will influence what the client
does with this information, as indicated in the table below:

	Code
	Meaning

	300

	Multiple Choice - Several options are available

	301

	Moved Permanently

	302

	Temporary Redirect

	304

	Not Modified - use whatever version you have cached

Other 30x statuses are available, but these are the only ones we’ll
concern ourselves with at the moment.

The syntax of the Redirect directive is as follows:

Redirect [status] RequestedURL TargetUrl

Location

The <Location> directive limits the scope of the enclosed directives by
URL. It is similar to the <Directory> directive, and starts a subsection
which is terminated with a </Location> directive. <Location> sections
are processed in the order they appear in the configuration file, after
the <Directory> sections and .htaccess files are read, and after the
<Files> sections.

<Location> sections operate completely outside the filesystem. This has
several consequences. Most importantly, <Location> directives should not
be used to control access to filesystem locations. Since several
different URLs may map to the same filesystem location, such access
controls may by circumvented.

The enclosed directives will be applied to the request if the path
component of the URL meets any of the following criteria:

The specified location matches exactly the path component of the URL.
The specified location, which ends in a forward slash, is a prefix of
the path component of the URL (treated as a context root). The specified
location, with the addition of a trailing slash, is a prefix of the path
component of the URL (also treated as a context root). In the example
below, where no trailing slash is used, requests to /private1,
/private1/ and /private1/file.txt will have the enclosed directives
applied, but /private1other would not.

<Location /private1>
 # ...
</Location>

In the example below, where a trailing slash is used, requests to
/private2/ and /private2/file.txt will have the enclosed directives
applied, but /private2 and /private2other would not.

<Location /private2/>
 # ...
</Location>

When to use <Location> Use <Location> to apply directives to content
that lives outside the filesystem. For content that lives in the
filesystem, use <Directory> and <Files>. An exception is <Location />,
which is an easy way to apply a configuration to the entire server. For
all origin (non-proxy) requests, the URL to be matched is a URL-path of
the form /path/. No scheme, hostname, port, or query string may be
included. For proxy requests, the URL to be matched is of the form
scheme://servername/path, and you must include the prefix.

The URL may use wildcards. In a wild-card string, ? matches any single
character, and * matches any sequences of characters. Neither wildcard
character matches a / in the URL-path.

Regular expressions can also be used, with the addition of the ~
character. For example:

<Location ~ "/(extra|special)/data">
 #...
</Location>

would match URLs that contained the substring /extra/data or
/special/data. The directive <LocationMatch> behaves identically to the
regex version of <Location>, and is preferred, for the simple reason
that ~ is hard to distinguish from - in many fonts, leading to
configuration errors when you’re following examples.

 <LocationMatch "/(extra|special)/data">
 #...
 +
 </LocationMatch>

The <Location> functionality is especially useful when combined with the
SetHandler directive. For example, to enable status requests, but allow
them only from browsers at example.com, you might use:

<Location /status>
 SetHandler server-status
 Require host example.com
</Location>

Virtual Hosts

Rather than running a separate physical server, or separate instance of
httpd, for each website, it is common practice run sites via virtual
hosts. Virtual hosting refers to running more than one web site on the
same web server.

Virtual hosts can be name-based - that is, multiple hostnames resolving
to the same IP address - or IP based - that is, a dedicated IP address
for each site - depending on various factors including availability of
IP addresses and preference. Name-based virtual hosting is more common,
but there are scenarios in which IP-based hosting may be preferred.

Proxying

TODO

mod_actions

TODO

mod_imagemap

TODO

mod_negotiation

TODO

File not found

In the event that a requested resource is not available, after all of
the above mentioned methods are attempted to find it …

TODO

 Introduction to mod_rewrite

Introduction to mod_rewrite

mod_rewrite is the power tool of Apache httpd URL mapping. Of course,
sometimes you just need a screwdriver, but when you need the power tool,
it’s good to know where to find it.

mod_rewrite provides sophisticated URL via regular expressions, and the
ability to do a variety of transformations,including, but not limited
to, modification of the request URL. You can additionally return a
variety of status codes, set cookies and environment variables, proxy
requests to another server, or send redirects to the client.

In this chapter we’ll cover mod_rewrite syntax and usage, and in the
next chapter we’ll give a variety of examples of using mod_rewrite in
common scenarios.

Loading mod_rewrite

To use mod_rewrite in any context, you need to have the module loaded.
If you’re the server administrator, this means having the following line
somewhere in your Apache httpd configuration:

LoadModule rewrite_module modules/mod_rewrite.so

This tells httpd that it needs to load mod_rewrite at startup time, so
as to make its functionality available to your configuration files.

If you are not the server administrator, then you’ll need to ask your
server administrator if the module is available, or experiment to see if
it is. If you’re not sure, you can test to see whether it’s enabled in
the following manner.

Create a subdirectory in your document directory. Let’s call it
test_rewrite

Create a file in that directory called .htaccess and put the following
text in it:

RewriteEngine on

Create another file in that directory called index.html containing the
following text:

<html>
Hello, mod_rewrite
</html>

Now, point your browser at that location:

http://example.com/test_rewrite/index.html

You’ll see one of two things. Either you’ll see the words
Hello, mod_rewrite in your browser, or you’ll see the ominous words
Internal Server Error. In the former case, everything is fine -
mod_rewrite is loaded and your .htacces file worked just fine. If you
got an Internal Server Error, that was httpd complaining that it didn’t
know what to do with the RewriteEngine directive, because mod_rewrite
wasn’t loaded.

If you have access to the server’s error log file, you’ll see the
following in it:

Invalid command 'RewriteEngine', perhaps misspelled or defined by a module not included in the server configuration

Which is httpd’s way of saying that you used a directive
(RewriteEngine) without first loading the module that defines that
directive.

If you see the Internal Server Error message, or that log file message,
it’s time to contact your server administrator and ask if they’ll load
mod_rewrite for you.

However, this is fairly unlikely, since mod_rewrite is a fairly standard
part of any Apache http server’s bag of tricks.

RewriteEngine

In the section above, we used the RewriteEngine directive without
defining what it does.

The RewriteEngine directive enables or disables the runtime rewriting
engine. The directive defaults to off, so the result is that rewrite
directives will be ignored in any scope where you don’t have the
following:

RewriteEngine On

While we won’t always include that in every example in this book, it
should be assumed, from this point forward, that every use of
mod_rewrite occurs in a scope where RewriteEngine has been turned on.

mod_rewrite in .htaccess files

Before we go any further, it’s critical to note that things are
different, in several important ways, if you have to use .htaccess files
for configuration.

What are .htaccess files?

.htaccess files are per-directory configuration files, for use by people
who don’t have access to the main server configuration file. For the
most part, you put configuration directives into .htaccess files just as
you would in a <Directory> block in the server configuration, but
there are some differences.

The most important of these differences is that the .htaccess file is
consulted every time a resource is requested from the directory in
question, whereas configurations placed in the main server configuration
file are loaded once, at server startup.

The positive side of this is that you can modify the contents of a
.htaccess file and have the change take effect immediately, as of the
next request received by the server.

The negative is that the .htaccess file needs to be loaded from the
filesystem on every request, resulting in an incremental slowdown for
every request. Additionally, because httpd doesn’t know ahead of time
what directories contain .htaccess files, it has to look in each
directory for them, all along the path to the requested resource, which
results in a slowdown that grows with the depth of the directory tree.

In Apache httpd 2.2 and earlier, .htaccess files are enabled by default
- that is the configuration directive that enables them,
AllowOverride, has a default value of All. In 2.4 and later, it has
a default value of None, so .htaccess files are disabled by default.

A typical configuration to permit the use of .htaccess files looks like:

<Directory />
 AllowOverride None
</Directory>

DocumentRoot /var/www/html
<Directory /var/www/html>
 AllowOverride All
 Options +FollowSymLinks
</Directory>

That is to say, .htaccess files are disallowed for the entire
filesystem, starting at the root, but then are permitted in the document
directories. This prevents httpd
from looking for .htaccess files in /, /var, and /var/www on the way to
looking in /var/www/html.[1]

Note that in order to enable the use of mod_rewrite directives in
.htaccess files, you also need to enable Options FollowSymLinks. A
RewriteRule may be thought of as a kind of symlink, because it allows
you to serve content from other directories via a rewrite. Thus, for
reasons of security, it is necessary to enable symlinks in order to use
mod_rewrite.

Ok, so, what’s the deal with mod_rewrite in .htaccess files?

There are two major differences that you must be aware of before we
proceed any further. The exact implications of these differences will
become more apparent as we go, but I wouldn’t want them to surprise you.

First, there are two directives that you cannot use in .htaccess files.
These directives are RewriteMap and (prior to httpd 2.4) RewriteLog.
These must be defined in the main server configuration. The reasons for
this will be discussed in greater length when we get to the sections
about those directives RewriteMap and RewriteLogging, respectively.).

Second, and more importantly, the syntax of RewriteRule directives
changes in .htaccess context in a way that you’ll need to be aware of
every time you write a RewriteRule. Specifically, the directory path
that you’re in will be removed from the URL path before it is presented
to the RewriteRule.

The exact implications of this will become clearer as we show you
examples. And, indeed, every example in this book will be presented in a
form for the main config, and a form for .htaccess files, whenever there
is a difference between the two forms. But we’ll start with a simple
example to illustrate the idea.

Some of this, you’ll need to take on faith at the moment, since we’ve
not yet introduced several of the concepts presented in this example, so
please be patient for now.

Consider a situation where you want to apply a rewrite to content in the
/images/puppies/ subdirectory of your website. You have four options:
You can put the RewriteRule in the main server configuration file; You
can place it in a .htacess file in the root of your website; You can
place it in a .htaccess file in the images directory; Or you can place
it in a .htaccess file in the images/puppies directory.

Here’s what the rule might look like in those various scenarios:

	Location
	Rule

	Main config

	RewriteRule ^/images/puppies/(.*).jpg /dogs/$1.gif

	Root directory

	RewriteRule ^images/puppies/(.*).jpg /dogs/$1.gif

	images directory

	RewriteRule ^puppies/(.*).jpg /dogs/$1.gif

	images/puppies directory

	RewriteRule ^(.*).jpg /dogs/$1.gif

For the moment, don’t worry too much about what the individual rules do.
Look instead at the URL path that is being considered in each rule, and
notice that for each directory that a .htaccess file is placed in, the
directory path that RewriteRule may consider is relative to that
directory, and anything above that becomes invisible for the purpose of
mod_rewrite.

Don’t worry too much if this isn’t crystal clear at this point. It will
become more clear as we proceed and you see more examples.

So, what do I do?

If you don’t have access to the main server configuration file, as it
the case for many of the readers of this book, don’t despair.
mod_rewrite is still a very powerful tool, and can be persuaded to do
almost anything that you need it to do. You just need to be aware of its
limitations, and adjust accordingly when presented with an example rule.

We aim to help you do that at each step along this journey.

RewriteOptions

RewriteOptions TODO

RewriteBase

TODO

1. Or, more to the point, it prevents malicious end-users from finding ways to look there.

 RewriteRule

RewriteRule

We’ll start the main technical discussion of mod_rewrite with the
RewriteRule directive, as it is the workhorse of mod_rewrite, and the
directive that you’ll encounter most frequently.

RewriteRule performs manipulation of a requested URL, and along the way
can do a number of additional things.

The syntax of a RewriteRule is fairly simple, but you’ll find that
exploring all of the possible permutations of it will take a while. So
we’ll provide a lot of examples along the way to illustrate.

If you learn best by example, you may want to jump back and forth
between this section and [rewrite-examples] to help you make sense
of this all.

Syntax

A RewriteRule directive has two required directives and optional flags.
It looks like:

RewriteRule PATTERN TARGET [FLAGS]

The following sections will discuss each of those arguments in great
detail, but these are defined as:

	PATTERN

	
A regular expression to be applied to the requested URI.

	TARGET

	
What the URI will be rewritten to.

	FLAGS

	
Optional flags that modify the behavior of the rule.

Pattern

The PATTERN argument of the RewriteRule is a regular expression that
is applied to the URL path, or file path, depending on the context.

In VirtualHost context, or in server-wide context, PATTERN will be
matched against the part of the URL after the hostname and port, and
before the query string. For example, in the URL
http://example.com/dogs/index.html?dog=collie, the pattern will be
matched against /dogs/index.html.

In Directory and htaccess context, PATTERN will be matched against the
filesystem path, after removing the prefix that led the server to the
current RewriteRule (e.g. either "dogs/index.html" or "index.html"
depending on where the directives are defined).

Subsequent RewriteRule patterns are matched against the output of the
last matching RewriteRule.

It is assumed, at this point, that you’ve already read the chapter
Introduction to Regular Expressions, and/or are familiar with what a
regular expression is, and how to craft one.

Target

The target of a RewriteRule can be one of the following:

A file-system path

Designates the location on the file-system of the resource to be
delivered to the client. Substitutions are only treated as a file-system
path when the rule is configured in server (virtualhost) context and the
first component of the path in the substitution exists in the
file-system

URL-path

A DocumentRoot-relative path to the resource to be served. Note that
mod_rewrite tries to guess whether you have specified a file-system path
or a URL-path by checking to see if the first segment of the path exists
at the root of the file-system. For example, if you specify a
Substitution string of /www/file.html, then this will be treated as a
URL-path unless a directory named www exists at the root or your
file-system (or, in the case of using rewrites in a .htaccess file,
relative to your document root), in which case it will be treated as a
file-system path. If you wish other URL-mapping directives (such as
Alias) to be applied to the resulting URL-path, use the [PT] flag as
described below.

Absolute URL

If an absolute URL is specified, mod_rewrite checks to see whether the
hostname matches the current host. If it does, the scheme and hostname
are stripped out and the resulting path is treated as a URL-path.
Otherwise, an external redirect is performed for the given URL. To force
an external redirect back to the current host, see the [R] flag below.

- (dash)

A dash indicates that no substitution should be performed (the existing
path is passed through untouched). This is used when a flag (see below)
needs to be applied without changing the path.

 Rewrite Logging

Rewrite Logging

Exactly how you turn on logging for mod_rewrite will depend on what
version of the Apache http server you are running. Logging got some
updates in the 2.4 release of the server, and the rewrite log was one of
the changes that happened at that time.

If you’re not sure what version you’re running, you can get the httpd
binary to tell you with the -v flag:

httpd -v

As with any other logging, the log file is opened when the server is
started up, before the server relinquishes its root privileges. For this
reason, the RewriteLog directive may not be used in .htaccess files,
but may only be invoked in the server configuration file.

2.2 and earlier

Prior to httpd 2.4, the way to enable mod_rewrite logging is with the
RewriteLog and RewriteLogLevel directives.

The RewriteLog directive should be set to the location of your rewrite
log file, and the RewriteLogLevel is set to a value from 0 to 5 to
indicate the desired verbosity of the log file, with 0 being no log
entries, and 5 being to log every time mod_rewrite even thinks about
doing something.

You’ll often find advice online suggesting that RewriteLogLevel be set
to 9 for maximum verbosity. Numbers higher than 5 don’t make it more
verbose, but they also don’t harm anything.

RewriteLog logs/rewrite.log
RewriteLogLevel 5

2.4 and later

In the 2.4 version of the server, many changes were made to the way that
logging works. One of these changes was the addition of per-module log
configurations. This rendered the RewriteLog directive superfluous.
So, from 2.4 on, rewrite logging is enabled using the LogLevel
directive, specifying a trace log level for mod_rewrite.

LogLevel info rewrite:trace6

Rewrite log entries will now show up in the main error log file, as
specified by the ErrorLog directive.

What’s in the Rewrite log? - An example

The best way to talk about what’s in the rewrite log is to show you some
examples of the kinds of things that mod_rewrite logs.

Consider a simple rewrite scenario such as follows:

RewriteEngine On
RewriteCond %{REQUEST_URI} !index.php
RewriteRule . /index.php [PT,L]

LogLevel info rewrite:trace6

Or, in 2.2
RewriteLog Level 5
RewriteLog /var/log/httpd/rewrite.log

This ruleset says "If it’s not already index.php, rewrite it to
index.php.

Now, we’ll make a request for the URL http://localhost/example and see
what gets logged:

[Thu Sep 12 20:22:13.363463 2013] [rewrite:trace2] [pid 11879]
mod_rewrite.c(468): [client 127.0.0.1:56623] 127.0.0.1 - -
[localhost/sid#7f985f445348][rid#7f985f949040/initial] init rewrite
engine with requested uri /example

[Thu Sep 12 20:22:13.363510 2013] [rewrite:trace3] [pid 11879]
mod_rewrite.c(468): [client 127.0.0.1:56623] 127.0.0.1 - -
[localhost/sid#7f985f445348][rid#7f985f949040/initial] applying
pattern '.' to uri '/example'

[Thu Sep 12 20:22:13.363525 2013] [rewrite:trace4] [pid 11879]
mod_rewrite.c(468): [client 127.0.0.1:56623] 127.0.0.1 - -
[localhost/sid#7f985f445348][rid#7f985f949040/initial] RewriteCond:
input='/example' pattern='!index.php' => matched

[Thu Sep 12 20:22:13.363533 2013] [rewrite:trace2] [pid 11879]
mod_rewrite.c(468): [client 127.0.0.1:56623] 127.0.0.1 - -
[localhost/sid#7f985f445348][rid#7f985f949040/initial] rewrite
'/example' -> 'index.php'

[Thu Sep 12 20:22:13.363542 2013] [rewrite:trace2] [pid 11879]
mod_rewrite.c(468): [client 127.0.0.1:56623] 127.0.0.1 - -
[localhost/sid#7f985f445348][rid#7f985f949040/initial] local path
result: index.php

[Thu Sep 12 20:22:13.575877 2013] [rewrite:trace2] [pid 11881]
mod_rewrite.c(468): [client 127.0.0.1:56624] 127.0.0.1 - -
[localhost/sid#7f985f445348][rid#7f985f949040/initial] init rewrite
engine with requested uri /favicon.ico

[Thu Sep 12 20:22:13.575920 2013] [rewrite:trace3] [pid 11881]
mod_rewrite.c(468): [client 127.0.0.1:56624] 127.0.0.1 - -
[localhost/sid#7f985f445348][rid#7f985f949040/initial] applying
pattern '.' to uri '/favicon.ico'

[Thu Sep 12 20:22:13.575935 2013] [rewrite:trace4] [pid 11881]
mod_rewrite.c(468): [client 127.0.0.1:56624] 127.0.0.1 - -
[localhost/sid#7f985f445348][rid#7f985f949040/initial] RewriteCond:
input='/favicon.ico' pattern='!index.php' => matched

[Thu Sep 12 20:22:13.575943 2013] [rewrite:trace2] [pid 11881]
mod_rewrite.c(468): [client 127.0.0.1:56624] 127.0.0.1 - -
[localhost/sid#7f985f445348][rid#7f985f949040/initial] rewrite
'/favicon.ico' -> 'index.php'

[Thu Sep 12 20:22:13.575955 2013] [rewrite:trace2] [pid 11881]
mod_rewrite.c(468): [client 127.0.0.1:56624] 127.0.0.1 - -
[localhost/sid#7f985f445348][rid#7f985f949040/initial] local path
result: index.php

This is an entry from a 2.4 server, and contains a few elements that
will be missing from rewrite log entries for 2.2 and
earlier.[1]

Note that I’ve inserted linebreaks between each log entry for
legibility. And speaking of legibility, let’s consider one single log
entry to see what the various components mean before we go any further.

Let’s look at the first log entry.

:

[Thu Sep 12 20:22:13.363463 2013] [rewrite:trace2] [pid 11879]
mod_rewrite.c(468): [client 127.0.0.1:56623] 127.0.0.1 - -
[localhost/sid#7f985f445348][rid#7f985f949040/initial] init rewrite
engine with requested uri /example

That’s a lot to process all at once, so we’ll break it down one field at
a time.

	[Thu Sep 12 20:22:13.363463 2013]

	
The date and time when the event occurred.

	[rewrite:trace2]

	
The name of the module logging, and the loglevel at which it is
logging. This is 2.4-specific

	[pid 1879]

	
The process id of the httpd process handling this request. This will
be the same across a given request. Note that in this example there
are two separate requests being handled, as you’ll see in a moment.

	mod_rewrite.c(468):

	
For in-depth debugging, this is the line number in the module source
code which is handling the current rewrite.

	[client 127.0.0.1:56623]

	
The client IP address, and TCP port number on which the request
connection was made.

	-

	
This field contains the client’s username in the event that the
request was authenticated. In this example the request was not
authenticated, so a blank value is logged.

	-

	
In the event that the request sent ident information, this will be
logged here. This hardly ever happens, and so this field will almost
always be -.

	[localhost/sid#7f985f445348][rid#7f985f949040/initial]

	
This is the unique identifier for the request.

	init rewrite engine with requested uri /example

	
Ahah! Finally! The actual log message from mod_rewrite!

Now that you know what all of the various fields are in the log entry,
let’s just look at the ones we actually care about. Here’s the log file
again, with a lot of the superfluous information removed:

init rewrite engine with requested uri /example
applying pattern '.' to uri '/example'
RewriteCond: input='/example' pattern='!index.php' => matched
rewrite '/example' -> 'index.php'
local path result: index.php

init rewrite engine with requested uri /favicon.ico
applying pattern '.' to uri '/favicon.ico'
RewriteCond: input='/favicon.ico' pattern='!index.php' => matched
rewrite '/favicon.ico' -> 'index.php'
local path result: index.php

I’ve removed the extraneous information, and split the log entries into
two logical chunks.

In the first bit, the requested URL /example is run through the
ruleset and ends up getting rewritten to /index.php, as desired.

In the second bit, the browser requests the URL /favicon.ico as a side
effect of the initial request. favicon is the icon that appears in
your browser address bar next to the URL, and is an automatic feature of
most browsers. As such, you’re likely to see mention of favicon.ico in
your log files from time to time, and it’s nothing to worry too much
about. You can read more about favicons at
http://en.wikipedia.org/wiki/Favicon.

Follow through the log lines for the first of the two requests.

First, the rewrite engine is made aware that it needs to consider a URL,
and the init rewrite engine log entry is made.

Next, the RewriteRule pattern . is applied to the requested URI
/example, and this comparison is logged. In your configuration file,
the RewriteRule appears after the RewriteCond, but at request time,
the RewriteRule pattern is applied first.

Since the pattern does match, in this case, we continue to the
RewriteCond, and the pattern !index.php is applied to the string
/example. Both the pattern and the string it is being applied to are
logged, which can be very useful later on in debugging rules that aren’t
behaving quite as you intended. This log line also tells you that the
pattern matched.

Since the RewriteRule pattern and the RewriteCond both matched, we
continue on to the right hand side of the RewriteRule and apply the
rewrite, and /example is rewritten to index.php, which is also
logged. A final log entry tells us what the local path result ends up
being after this process, which is index.php.

This kind of detailed log trail tells you very specifically what’s going
on, and what happened at each step.[2]

RewriteRules in .htaccess files - An example

We’ve previously discussed using mod_rewrite in .htaccess files, but
it’s time to see what this actually looks like in practice. Let’s
replace the configuration file entry above with a .htaccess file
instead, placed in the root document directory of our website. So, I’m
going to comment out several lines in the server configuration:

RewriteEngine On
RewriteCond %{REQUEST_URI} !index.php
RewriteRule . /index.php [PT,L]

LogLevel info rewrite:trace6

Or, in 2.2
RewriteLog Level 5
RewriteLog /var/log/httpd/rewrite.log

And instead, I’m going to place the following .htaccess file:

RewriteEngine On
RewriteCond %{REQUEST_URI} !index.php
RewriteRule . /index.php [PT,L]

Now, see what the log file looks like:

For the sake of brevity, let’s look at just the actual log messages, and
ignore all of the extra information:

[perdir /var/www/html/] strip per-dir prefix: /var/www/html/example -> example
[perdir /var/www/html/] applying pattern '.' to uri 'example'
[perdir /var/www/html/] input='/example' pattern='!index.php' => matched
[perdir /var/www/html/] rewrite 'example' -> '/index.php'
[perdir /var/www/html/] forcing '/index.php' to get passed through to next API URI-to-filename handler
[perdir /var/www/html/] internal redirect with /index.php [INTERNAL REDIRECT]
[perdir /var/www/html/] strip per-dir prefix: /var/www/html/index.php -> index.php
[perdir /var/www/html/] applying pattern '.' to uri 'index.php'
[perdir /var/www/html/] RewriteCond: input='/index.php' pattern='!index.php' => not-matched
[perdir /var/www/html/] pass through /var/www/html/index.php

The first thing you’ll notice, of course, is that this is much longer
than what we had before. Running rewrite rules in .htaccess files
generally takes several more steps than when the rules are in the server
configuration file, which is one of several reasons that using .htaccess
files is so much less efficient (i.e., slower) than using the server
configuration file.

Whenever possible, you should use the server configuration file rather
than .htaccess files. (There are other reasons for this, too.)

Next, you’ll notice that each log entry contains the preface:

[perdir /var/www/html]

perdir refers to rewrite directives that occur in per directory
context - i.e., .htaccess files or <Directory> blocks. They are
treated special in a few different ways, as we’ll see.

The first of these is shown in the first log entry:

strip per-dir prefix: /var/www/html/example -> example

What that means is that in perdir context, the directory path is removed
from any string before they are considered in the pattern match. Thus,
rather than considering the string /example, as we did the first time
through, now we’re looking at the string example. While this may seem
trivial at this point, as we proceed to more complex examples, that
leading slash will be the difference between a pattern matching and not
matching, so you need to be aware of this every time you use .htaccess
files.

The next few lines of the log proceed as before, except that we’re
looking at example rather than /example in each line. Carefully
compare the log entries from the first time through to the ones this
time.

What happens next is a surprise to most first-time users of mod_rewrite.
The requested URI example is redirected to the URI /index.php, and
the whole process starts over again with that new URL. This is because,
in perdir context, once a rewrite has been executed, that target URL
must get passed back to the URL mapping process to determine what that
URL maps to … which may include invoking a .htaccess file.

In this case, this causes the ruleset to be executed all over again,
with the rewritten URL /index.php.

The remainder of the log should look very familiar. It’s the same as
what we saw before, with /index.php getting stripped to index.php
and run through the paces. This time around, however, the RewriteCond
does not match, and so the request is passed through unchanged.

1. Future editions of this book will contain full examples from a 2.2 server, for those still running that version.

2. Future editions of this book will contain an appendix in which several log traces are explained in exhaustive detail. I can hardly wait.

 RewriteRule flags

RewriteRule Flags

Flags modify the behavior of the rule. You may have zero or more flags,
and the effect is cumulative. Flags may be repeated where appropriate.
For example, you may set several environment variables by using several
[E] flags, or set several cookies with multiple [CO] flags. Flags
are separated with commas:

[B,C,NC,PT,L]

TODO Rewrite Flags should be a separate chapter

There are a lot of flags. Here they are:

B - escape backreferences

The [B] flag instructs RewriteRule to escape non-alphanumeric characters
before applying the transformation.

mod_rewrite has to unescape URLs before mapping them, so backreferences
are unescaped at the time they are applied. Using the B flag,
non-alphanumeric characters in backreferences will be escaped. (See
backreferences for discussion of backreferences.) For example, consider
the rule:

RewriteRule ^search/(.*)$ /search.php?term=$1

Given a search term of 'x & y/z', a browser will encode it as
'x%20%26%20y%2Fz', making the request 'search/x%20%26%20y%2Fz'.
Without the B flag, this rewrite rule will map to
'search.php?term=x & y/z', which isn’t a valid URL, and so would be
encoded as search.php?term=x%20&y%2Fz=, which is not what was
intended.

With the B flag set on this same rule, the parameters are re-encoded
before being passed on to the output URL, resulting in a correct mapping
to /search.php?term=x%20%26%20y%2Fz.

Note that you may also need to set AllowEncodedSlashes to On to get
this particular example to work, as httpd does not allow encoded slashes
in URLs, and returns a 404 if it sees one.

This escaping is particularly necessary in a proxy situation, when the
backend may break if presented with an unescaped URL.

C - chain

The [C] or [chain] flag indicates that the RewriteRule is chained to
the next rule. That is, if the rule matches, then it is processed as
usual and control moves on to the next rule. However, if it does not
match, then the next rule, and any other rules that are chained
together, will be skipped.

CO - cookie

The [CO], or [cookie] flag, allows you to set a cookie when a
particular RewriteRule matches. The argument consists of three required
fields and four optional fields.

The full syntax for the flag, including all attributes, is as follows:

[CO=NAME:VALUE:DOMAIN:lifetime:path:secure:httponly]

You must declare a name, a value, and a domain for the cookie to be set.

Domain

The domain for which you want the cookie to be valid. This may be a
hostname, such as www.example.com, or it may be a domain, such as
.example.com. It must be at least two parts separated by a dot. That is,
it may not be merely .com or .net. Cookies of that kind are forbidden by
the cookie security model. You may optionally also set the following
values:

Lifetime

The time for which the cookie will persist, in minutes. A value of 0
indicates that the cookie will persist only for the current browser
session. This is the default value if none is specified.

Path

The path, on the current website, for which the cookie is valid, such as
/customers/ or /files/download/. By default, this is set to / -
that is, the entire website.

Secure

If set to secure, true, or 1, the cookie will only be permitted to be
translated via secure (https) connections.

httponly

If set to HttpOnly, true, or 1, the cookie will have the HttpOnly flag
set, which means that the cookie will be inaccessible to JavaScript code
on browsers that support this feature.

Example

Consider this example:

RewriteEngine On
RewriteRule ^/index\.html - [CO=frontdoor:yes:.example.com:1440:/]

In the example give, the rule doesn’t rewrite the request. The '-'
rewrite target tells mod_rewrite to pass the request through unchanged.
Instead, it sets a cookie called 'frontdoor' to a value of 'yes'. The
cookie is valid for any host in the .example.com domain. It will be set
to expire in 1440 minutes (24 hours) and will be returned for all URIs
(i.e., for the path '/').

DPI - discardpath

The DPI flag causes the PATH_INFO portion of the rewritten URI to be
discarded.

This flag is available in version 2.2.12 and later.

In per-directory context, the URI each RewriteRule compares against is
the concatenation of the current values of the URI and PATH_INFO.

The current URI can be the initial URI as requested by the client, the
result of a previous round of mod_rewrite processing, or the result of a
prior rule in the current round of mod_rewrite processing.

In contrast, the PATH_INFO that is appended to the URI before each
rule reflects only the value of PATH_INFO before this round of
mod_rewrite processing. As a consequence, if large portions of the URI
are matched and copied into a substitution in multiple RewriteRule
directives, without regard for which parts of the URI came from the
current PATH_INFO, the final URI may have multiple copies of
PATH_INFO appended to it.

Use this flag on any substitution where the PATH_INFO that resulted
from the previous mapping of this request to the filesystem is not of
interest. This flag permanently forgets the PATH_INFO established
before this round of mod_rewrite processing began. PATH_INFO will not
be recalculated until the current round of mod_rewrite processing
completes. Subsequent rules during this round of processing will see
only the direct result of substitutions, without any PATH_INFO
appended.

E - env

With the [E], or [env] flag, you can set the value of an environment
variable. Note that some environment variables may be set after the rule
is run, thus unsetting what you have set.

The full syntax for this flag is:

[E=VAR:VAL]
[E=!VAR]

VAL may contain backreferences (See section backreferences) ($N or
%N) which will be expanded.

Using the short form

[E=VAR]

you can set the environment variable named VAR to an empty value.

The form

[E=!VAR]

allows to unset a previously set environment variable named VAR.

Environment variables can then be used in a variety of contexts,
including CGI programs, other RewriteRule directives, or CustomLog
directives.

The following example sets an environment variable called 'image' to a
value of '1' if the requested URI is an image file. Then, that
environment variable is used to exclude those requests from the access
log.

RewriteRule \.(png|gif|jpg)$ - [E=image:1]
CustomLog logs/access_log combined env=!image

Note that this same effect can be obtained using SetEnvIf. This
technique is offered as an example, not as a recommendation.

The [E] flag may be repeated if you want to set more than one
environment variable at the same time:

RewriteRule \.pdf$ [E=document:1,E=pdf:1,E=done]

END

Although the flags are presented here in alphabetical order, it makes
more sense to go read the section about the L flag first (ref{lflag})
and then come back here.

Using the [END] flag terminates not only the current round of rewrite
processing (like [L]) but also prevents any subsequent rewrite
processing from occurring in per-directory (htaccess) context.

This does not apply to new requests resulting from external redirects.

F - forbidden

Using the [F] flag causes the server to return a 403 Forbidden status
code to the client. While the same behavior can be accomplished using
the Deny directive, this allows more flexibility in assigning a
Forbidden status.

The following rule will forbid .exe files from being downloaded from
your server.

RewriteRule \.exe - [F]

This example uses the "-" syntax for the rewrite target, which means
that the requested URI is not modified. There’s no reason to rewrite to
another URI, if you’re going to forbid the request.

When using [F], an [L] is implied - that is, the response is
returned immediately, and no further rules are evaluated.

G - gone

The [G] flag forces the server to return a 410 Gone status with the
response. This indicates that a resource used to be available, but is no
longer available.

As with the [F] flag, you will typically use the "-" syntax for the
rewrite target when using the [G] flag:

RewriteRule oldproduct - [G,NC]

When using [G], an [L] is implied - that is, the response is
returned immediately, and no further rules are evaluated.

H - handler

Forces the resulting request to be handled with the specified handler.
For example, one might use this to force all files without a file
extension to be parsed by the php handler:

RewriteRule !\. - [H=application/x-httpd-php]

The regular expression above - !\. - will match any request that does
not contain the literal . character.

This can be also used to force the handler based on some conditions. For
example, the following snippet used in per-server context allows .php
files to be displayed by mod_php if they are requested with the .phps
extension:

RewriteRule ^(/source/.+\.php)s$ $1 [H=application/x-httpd-php-source]

The regular expression above - ^(/source/.+\.php)s$ - will match any
request that starts with /source/ followed by 1 or n characters
followed by .phps literally. The backreference $1 referrers to the
captured match within parenthesis of the regular expression.

L - last

The [L] flag causes mod_rewrite to stop processing the rule set. In
most contexts, this means that if the rule matches, no further rules
will be processed. This corresponds to the last command in Perl, or the
break command in C. Use this flag to indicate that the current rule
should be applied immediately without considering further rules.

If you are using RewriteRule in either .htaccess files or in
<Directory> sections, it is important to have some understanding of
how the rules are processed. The simplified form of this is that once
the rules have been processed, the rewritten request is handed back to
the URL parsing engine to do what it may with it. It is possible that as
the rewritten request is handled, the .htaccess file or <Directory>
section may be encountered again, and thus the ruleset may be run again
from the start. Most commonly this will happen if one of the rules
causes a redirect - either internal or external - causing the request
process to start over.

It is therefore important, if you are using RewriteRule directives in
one of these contexts, that you take explicit steps to avoid rules
looping, and not count solely on the [L] flag to terminate execution
of a series of rules, as shown below.

An alternative flag, [END], can be used to terminate not only the
current round of rewrite processing but prevent any subsequent rewrite
processing from occurring in per-directory (htaccess) context. This does
not apply to new requests resulting from external redirects.

The example given here will rewrite any request to index.php, giving the
original request as a query string argument to index.php, however, the
RewriteCond ensures that if the request is already for index.php, the
RewriteRule will be skipped.

RewriteBase /
RewriteCond %{REQUEST_URI} !=/index.php
RewriteRule ^(.*) /index.php?req=$1 [L,PT]

See the RewriteCond chapter for further discussion of the RewriteCond
directive.

N - next

The [N] flag causes the ruleset to start over again from the top,
using the result of the ruleset so far as a starting point. Use with
extreme caution, as it may result in loop.

The [N] flag could be used, for example, if you wished to replace a
certain string or letter repeatedly in a request. The example shown here
will replace A with B everywhere in a request, and will continue doing
so until there are no more As to be replaced.

RewriteRule (.*)A(.*) $1B$2 [N]

You can think of this as a while loop: While this pattern still matches
(i.e., while the URI still contains an A), perform this substitution
(i.e., replace the A with a B).

NC - nocase

Use of the [NC] flag causes the RewriteRule to be matched in a
case-insensitive manner. That is, it doesn’t care whether letters appear
as upper-case or lower-case in the matched URI.

In the example below, any request for an image file will be proxied to
your dedicated image server. The match is case-insensitive, so that .jpg
and .JPG files are both acceptable, for example.

RewriteRule (.*\.(jpg|gif|png))$ http://images.example.com$1 [P,NC]

NE - noescape

By default, special characters, such as \& and ?, for example, will
be converted to their hexcode equivalent. Using the [NE] flag prevents
that from happening.

RewriteRule ^/anchor/(.+) /bigpage.html#$1 [NE,R]

The above example will redirect /anchor/xyz to /bigpage.html#xyz.
Omitting the [NE] will result in the # being converted to its
hexcode equivalent, %23, which will then result in a 404 Not Found
error condition.

NS - nosubreq

Use of the [NS] flag prevents the rule from being used on subrequests.
For example, a page which is included using an SSI (Server Side Include)
is a subrequest, and you may want to avoid rewrites happening on those
subrequests. Also, when mod_dir tries to find out information about
possible directory default files (such as index.html files), this is an
internal subrequest, and you often want to avoid rewrites on such
subrequests. On subrequests, it is not always useful, and can even cause
errors, if the complete set of rules are applied. Use this flag to
exclude problematic rules.

To decide whether or not to use this rule: if you prefix URLs with
CGI-scripts, to force them to be processed by the CGI-script, it’s
likely that you will run into problems (or significant overhead) on
sub-requests. In these cases, use this flag.

Images, javascript files, or css files, loaded as part of an HTML page,
are not subrequests - the browser requests them as separate HTTP
requests.

P - proxy

Use of the [P] flag causes the request to be handled by mod_proxy, and
handled via a proxy request. For example, if you wanted all image
requests to be handled by a back-end image server, you might do
something like the following:

RewriteRule /(.*)\.(jpg|gif|png)$ http://images.example.com/$1.$2 [P]

Use of the [P] flag implies [L]. That is, the request is immediately
pushed through the proxy, and any following rules will not be
considered.

You must make sure that the substitution string is a valid URI
(typically starting with <http://hostname>) which can be handled by the
mod_proxy. If not, you will get an error from the proxy module. Use this
flag to achieve a more powerful implementation of the ProxyPass
directive, to map remote content into the namespace of the local server.

Security Warning

Take care when constructing the target URL of the rule, considering the
security impact from allowing the client influence over the set of URLs
to which your server will act as a proxy. Ensure that the scheme and
hostname part of the URL is either fixed, or does not allow the client
undue influence.

Performance warning

Using this flag triggers the use of mod_proxy, without handling of
persistent connections. This means the performance of your proxy will be
better if you set it up with ProxyPass or ProxyPassMatch.

This is because this flag triggers the use of the default worker, which
does not handle connection pooling. Avoid using this flag and prefer
those directives, whenever you can.

Note: mod_proxy must be enabled in order to use this flag.

See Chapter ref{chapter_proxy} for a more thorough treatment of
proxying.

PT - passthrough

The target (or substitution string) in a RewriteRule is assumed to be
a file path, by default. The use of the [PT] flag causes it to be
treated as a URI instead. That is to say, the use of the [PT] flag
causes the result of the RewriteRule to be passed back through URL
mapping, so that location-based mappings, such as Alias, Redirect,
or ScriptAlias, for example, might have a chance to take effect.

If, for example, you have an Alias for /icons, and have a
RewriteRule pointing there, you should use the [PT] flag to ensure
that the Alias is evaluated.

Alias /icons /usr/local/apache/icons
RewriteRule /pics/(.+)\.jpg$ /icons/$1.gif [PT]

Omission of the [PT] flag in this case will cause the Alias to be
ignored, resulting in a 'File not found' error being returned.

The [PT] flag implies the [L] flag: rewriting will be stopped in
order to pass the request to the next phase of processing.

Note that the [PT] flag is implied in per-directory contexts such as
<Directory> sections or in .htaccess files. The only way to circumvent
that is to rewrite to -.

QSA - qsappend

When the replacement URI contains a query string, the default behavior
of RewriteRule is to discard the existing query string, and replace it
with the newly generated one. Using the [QSA] flag causes the query
strings to be combined.

Consider the following rule:

RewriteRule /pages/(.+) /page.php?page=$1 [QSA]

With the [QSA] flag, a request for /pages/123?one=two will be mapped
to /page.php?page=123&one=two. Without the [QSA] flag, that same
request will be mapped to /page.php?page=123 - that is, the existing
query string will be discarded.

QSD - qsdiscard

When the requested URI contains a query string, and the target URI does
not, the default behavior of RewriteRule is to copy that query string
to the target URI. Using the [QSD] flag causes the query string to be
discarded.

This flag is available in version 2.4.0 and later.

Using [QSD] and [QSA] together will result in [QSD] taking
precedence.

If the target URI has a query string, the default behavior will be
observed - that is, the original query string will be discarded and
replaced with the query string in the RewriteRule target URI.

R - redirect

Use of the [R] flag causes a HTTP redirect to be issued to the
browser. If a fully-qualified URL is specified (that is, including
<http://servername/>) then a redirect will be issued to that location.
Otherwise, the current protocol, servername, and port number will be
used to generate the URL sent with the redirect.

Any valid HTTP response status code may be specified, using the syntax
[R=305], with a 302 status code being used by default if none is
specified. The status code specified need not necessarily be a redirect
(3xx) status code. However, if a status code is outside the redirect
range (300-399) then the substitution string is dropped entirely, and
rewriting is stopped as if the L were used.

In addition to response status codes, you may also specify redirect
status using their symbolic names: temp (default), permanent, or
seeother.

You will almost always want to use [R] in conjunction with [L] (that
is, use [R,L]) because on its own, the [R] flag prepends
http://thishost%5B:thisport%5D to the URI, but then passes this on to
the next rule in the ruleset, which can often result in 'Invalid URI in
request' warnings.

S - skip

The [S] flag is used to skip rules that you don’t want to run. The
syntax of the skip flag is [S=N], where N signifies the number of
rules to skip (provided the RewriteRule and any preceding RewriteCond
directives match). This can be thought of as a goto statement in your
rewrite ruleset. In the following example, we only want to run the
RewriteRule if the requested URI doesn’t correspond with an actual file.

Is the request for a non-existent file?
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d

If so, skip these two RewriteRules
RewriteRule .? - [S=2]

RewriteRule (.*\.gif) images.php?$1
RewriteRule (.*\.html) docs.php?$1

This technique is useful because a RewriteCond only applies to the
RewriteRule immediately following it. Thus, if you want to make a
RewriteCond apply to several RewriteRule`s, one possible technique is
to negate those conditions and add a `RewriteRule with a [Skip] flag.
You can use this to make pseudo if-then-else constructs: The last rule
of the then-clause becomes skip=N, where N is the number of rules in the
else-clause:

Does the file exist?
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d

Create an if-then-else construct by skipping 3 lines if we meant to go to the "else" stanza.
RewriteRule .? - [S=3]

IF the file exists, then:
 RewriteRule (.*\.gif) images.php?$1
 RewriteRule (.*\.html) docs.php?$1
 # Skip past the "else" stanza.
 RewriteRule .? - [S=1]
ELSE...
 RewriteRule (.*) 404.php?file=$1
END

It is probably easier to accomplish this kind of configuration using the
<If>, <ElseIf>, and <Else> directives instead. (2.4 and later -
See ref{if}.)

T - type

Sets the MIME type with which the resulting response will be sent. This
has the same effect as the AddType directive.

For example, you might use the following technique to serve Perl source
code as plain text, if requested in a particular way:

Serve .pl files as plain text
RewriteRule \.pl$ - [T=text/plain]

Or, perhaps, if you have a camera that produces jpeg images without file
extensions, you could force those images to be served with the correct
MIME type by virtue of their file names:

Files with 'IMG' in the name are jpg images.
RewriteRule IMG - [T=image/jpg]

Please note that this is a trivial example, and could be better done
using <FilesMatch> instead. Always consider the alternate solutions to
a problem before resorting to rewrite, which will invariably be a less
efficient solution than the alternatives.

If used in per-directory context, use only - (dash) as the substitution
for the entire round of mod_rewrite processing, otherwise the MIME-type
set with this flag is lost due to an internal re-processing (including
subsequent rounds of mod_rewrite processing). The L flag can be useful
in this context to end the current round of mod_rewrite processing.

 RewriteCond

RewriteCond

The RewriteCond directive attaches additional conditions on a
RewriteRule, and may also set backreferences that may be used in the
rewrite target.

One or more RewriteCond directives may precede a RewriteRule
directive. That RewriteRule is then applied only if the current state
of the URI matches its pattern, and all of these conditions are met.

The RewriteCond directive has the following syntax:

RewriteCond TestString CondPattern [Flag]

The arguments have the following meaning:

	TestString

	
Any string or variable to be tested for a match.

	CondPattern

	
A regular expression or other other expression to be compared against
the TestString.

	Flag

	
One or more flags which modify the behavior of the condition.

These definitions will be expanded in the sections below.

TestString

TestString is a string which can contain the following expanded
constructs in addition to plain text:

	RewriteRule backreferences

	
These are backreferences of the form $N (0 ⇐ N ⇐ 9). $1 to $9
provide access to the grouped parts (in parentheses) of the pattern,
from the RewriteRule which is subject to the current set of
RewriteCond conditions. $0 provides access to the whole string matched
by that pattern.

	RewriteCond backreferences

	
These are backreferences of the form %N (0 ⇐ N ⇐ 9). %1 to %9
provide access to the grouped parts (again, in parentheses) of the
pattern, from the last matched RewriteCond in the current set of
conditions. %0 provides access to the whole string matched by that
pattern.

	RewriteMap expansions

	
These are expansions of the form $\{mapname:key|default}. See the
documentation for RewriteMap for more details.

	Server-Variables

	
These are variables of the form %\{ NAME_OF_VARIABLE } where
NAME_OF_VARIABLE can be a string taken from the following list:

HTTP headers:

HTTP_USER_AGENT HTTP_REFERER HTTP_COOKIE HTTP_FORWARDED HTTP_HOST
HTTP_PROXY_CONNECTION HTTP_ACCEPT

connection & request:

REMOTE_ADDR REMOTE_HOST REMOTE_PORT REMOTE_USER REMOTE_IDENT
REQUEST_METHOD SCRIPT_FILENAME PATH_INFO QUERY_STRING AUTH_TYPE

server internals:

DOCUMENT_ROOT SERVER_ADMIN SERVER_NAME SERVER_ADDR SERVER_PORT
SERVER_PROTOCOL SERVER_SOFTWARE

date and time:

TIME_YEAR TIME_MON TIME_DAY TIME_HOUR TIME_MIN TIME_SEC TIME_WDAY TIME

specials:

API_VERSION THE_REQUEST REQUEST_URI REQUEST_FILENAME IS_SUBREQ HTTPS
REQUEST_SCHEME

These variables all correspond to the similarly named HTTP MIME-headers,
C variables of the Apache HTTP Server or struct tm fields of the Unix
system. Most are documented elsewhere in the Manual or in the CGI
specification.

SERVER_NAME and SERVER_PORT depend on the values of UseCanonicalName and
UseCanonicalPhysicalPort respectively.

Those that are special to mod_rewrite include those below.

	IS_SUBREQ

	
Will contain the text "true" if the request currently being processed
is a sub-request, "false" otherwise. Sub-requests may be generated by
modules that need to resolve additional files or URIs in order to
complete their tasks.

	API_VERSION

	
This is the version of the Apache httpd module API (the internal
interface between server and module) in the current httpd build, as
defined in include/ap_mmn.h. The module API version corresponds to the
version of Apache httpd in use (in the release version of Apache httpd
1.3.14, for instance, it is 19990320:10), but is mainly of interest to
module authors.

	THE_REQUEST

	
The full HTTP request line sent by the browser to the server (e.g.,
"GET /index.html HTTP/1.1"). This does not include any additional
headers sent by the browser. This value has not been unescaped
(decoded), unlike most other variables below.

	REQUEST_URI

	
The path component of the requested URI, such as "/index.html". This
notably excludes the query string which is available as as its own
variable named QUERY_STRING.

	REQUEST_FILENAME

	
The full local filesystem path to the file or script matching the
request, if this has already been determined by the server at the time
REQUEST_FILENAME is referenced. Otherwise, such as when used in
virtual host context, the same value as REQUEST_URI. Depending on the
value of AcceptPathInfo, the server may have only used some leading
components of the REQUEST_URI to map the request to a file.

	HTTPS

	
Will contain the text "on" if the connection is using SSL/TLS, or
"off" otherwise. (This variable can be safely used regardless of
whether or not mod_ssl is loaded).

	REQUEST_SCHEME

	
Will contain the scheme of the request (usually "http" or "https").
This value can be influenced with ServerName.

If the TestString has the special value expr, the CondPattern will be
treated as an ap_expr. HTTP headers referenced in the expression will be
added to the Vary header if the novary flag is not given.

Other things you should be aware of:

The variables SCRIPT_FILENAME and REQUEST_FILENAME contain the same
value - the value of the filename field of the internal request_rec
structure of the Apache HTTP Server. The first name is the commonly
known CGI variable name while the second is the appropriate counterpart
of REQUEST_URI (which contains the value of the uri field of
request_rec).

If a substitution occurred and the rewriting continues, the value of
both variables will be updated accordingly.

If used in per-server context (i.e., before the request is mapped to the
filesystem) SCRIPT_FILENAME and REQUEST_FILENAME cannot contain the full
local filesystem path since the path is unknown at this stage of
processing. Both variables will initially contain the value of
REQUEST_URI in that case. In order to obtain the full local filesystem
path of the request in per-server context, use an URL-based look-ahead
%{LA-U:REQUEST_FILENAME} to determine the final value of
REQUEST_FILENAME.

%{ENV:variable}, where variable can be any environment variable, is
also available. This is looked-up via internal Apache httpd structures
and (if not found there) via getenv() from the Apache httpd server
process.

%{SSL:variable}, where variable is the name of an SSL environment
variable, can be used whether or not mod_ssl is loaded, but will always
expand to the empty string if it is not. Example:
%{SSL:SSL_CIPHER_USEKEYSIZE} may expand to 128.

%{HTTP:header}, where header can be any HTTP MIME-header name, can
always be used to obtain the value of a header sent in the HTTP request.
Example: %{HTTP:Proxy-Connection} is the value of the HTTP header
Proxy-Connection:.

If a HTTP header is used in a condition this header is added to the Vary
header of the response in case the condition evaluates to to true for
the request. It is not added if the condition evaluates to false for the
request. Adding the HTTP header to the Vary header of the response is
needed for proper caching.

It has to be kept in mind that conditions follow a short circuit logic
in the case of the 'ornext|OR' flag so that certain conditions might not
be evaluated at all.

%{LA-U:variable} can be used for look-aheads which perform an internal
(URL-based) sub-request to determine the final value of variable. This
can be used to access variable for rewriting which is not available at
the current stage, but will be set in a later phase.

For instance, to rewrite according to the REMOTE_USER variable from
within the per-server context (httpd.conf file) you must use
%{LA-U:REMOTE_USER} - this variable is set by the authorization phases,
which come after the URL translation phase (during which mod_rewrite
operates).

On the other hand, because mod_rewrite implements its per-directory
context (.htaccess file) via the Fixup phase of the API and because the
authorization phases come before this phase, you just can use
%{REMOTE_USER} in that context.

%{LA-F:variable} can be used to perform an internal (filename-based)
sub-request, to determine the final value of variable. Most of the time,
this is the same as LA-U above.

CondPattern

CondPattern is the condition pattern, a regular expression which is
applied to the current instance of the TestString. TestString is first
evaluated, before being matched against CondPattern.

CondPattern is usually a perl compatible regular expression, but there
is additional syntax available to perform other useful tests against the
Teststring:

You can prefix the pattern string with a '!' character (exclamation
mark) to specify a non-matching pattern.

You can perform lexicographical string comparisons:

	'<CondPattern' (lexicographically precedes)

	
Treats the CondPattern as a plain string and compares it
lexicographically to TestString. True if TestString lexicographically
precedes CondPattern.

	'>CondPattern' (lexicographically follows)

	
Treats the CondPattern as a plain string and compares it
lexicographically to TestString. True if TestString lexicographically
follows CondPattern.

	'=CondPattern' (lexicographically equal)

	
Treats the CondPattern as a plain string and compares it
lexicographically to TestString. True if TestString is
lexicographically equal to CondPattern (the two strings are exactly
equal, character for character). If CondPattern is "" (two quotation
marks) this compares TestString to the empty string.

	'⇐CondPattern' (lexicographically less than or equal to)

	
Treats the CondPattern as a plain string and compares it
lexicographically to TestString. True if TestString lexicographically
precedes CondPattern, or is equal to CondPattern (the two strings are
equal, character for character).

	'>=CondPattern' (lexicographically greater than or equal to)

	
Treats the CondPattern as a plain string and compares it
lexicographically to TestString. True if TestString lexicographically
follows CondPattern, or is equal to CondPattern (the two strings are
equal, character for character).

You can perform integer comparisons:

	'-eq' (is numerically equal to)

	
The TestString is treated as an integer, and is numerically compared
to the CondPattern. True if the two are numerically equal.

	'-ge' (is numerically greater than or equal to)

	
The TestString is treated as an integer, and is numerically compared
to the CondPattern. True if the TestString is numerically greater than
or equal to the CondPattern.

	'-gt' (is numerically greater than)

	
The TestString is treated as an integer, and is numerically compared
to the CondPattern. True if the TestString is numerically greater than
the CondPattern.

	'-le' (is numerically less than or equal to)

	
The TestString is treated as an integer, and is numerically compared
to the CondPattern. True if the TestString is numerically less than or
equal to the CondPattern. Avoid confusion with the -l by using the -L
or -h variant.

	'-lt' (is numerically less than)

	
The TestString is treated as an integer, and is numerically compared
to the CondPattern. True if the TestString is numerically less than
the CondPattern. Avoid confusion with the -l by using the -L or -h
variant.

You can perform various file attribute tests:

	'-d' (is directory)

	
Treats the TestString as a pathname and tests whether or not it
exists, and is a directory.

	'-f' (is regular file)

	
Treats the TestString as a pathname and tests whether or not it
exists, and is a regular file.

	'-F' (is existing file, via subrequest)

	
Checks whether or not TestString is a valid file, accessible via all
the server’s currently-configured access controls for that path. This
uses an internal subrequest to do the check, so use it with care - it
can impact your server’s performance!

	'-H' (is symbolic link, bash convention)

	
See -l.

	'-l' (is symbolic link)

	
Treats the TestString as a pathname and tests whether or not it
exists, and is a symbolic link. May also use the bash convention of -L
or -h if there’s a possibility of confusion such as when using the -lt
or -le tests.

	'-L' (is symbolic link, bash convention)

	
See -l.

	'-s' (is regular file, with size)

	
Treats the TestString as a pathname and tests whether or not it
exists, and is a regular file with size greater than zero.

	'-U' (is existing URL, via subrequest)

	
Checks whether or not TestString is a valid URL, accessible via all
the server’s currently-configured access controls for that path. This
uses an internal subrequest to do the check, so use it with care - it
can impact your server’s performance!

	'-x' (has executable permissions)

	
Treats the TestString as a pathname and tests whether or not it
exists, and has executable permissions. These permissions are
determined according to the underlying OS.

Note:

All of these tests can also be prefixed by an exclamation mark ('!') to
negate their meaning.

If the TestString has the special value expr, the CondPattern will be
treated as an ap_expr.

In the below example, -strmatch is used to compare the REFERER against
the site hostname, to block unwanted hotlinking.

RewriteCond expr "! %{HTTP_REFERER} -strmatch '*://%{HTTP_HOST}/*'"
RewriteRule ^/images - [F]

Flag

You can also set special flags for CondPattern by appending [flags] as
the third argument to the RewriteCond directive, where flags is a
comma-separated list of any of the following flags:

	'nocase|NC' (no case)

	
This makes the test case-insensitive - differences between 'A-Z' and
'a-z' are ignored, both in the expanded TestString and the
CondPattern. This flag is effective only for comparisons between
TestString and CondPattern. It has no effect on filesystem and
subrequest checks.

	'ornext|OR' (or next condition)

	
Use this to combine rule conditions with a local OR instead of the
implicit AND. Typical example:

RewriteCond %{REMOTE_HOST} ^host1 [OR]
RewriteCond %{REMOTE_HOST} ^host2 [OR]
RewriteCond %{REMOTE_HOST} ^host3
RewriteRule ...some special stuff for any of these hosts...

Without this flag you would have to write the condition/rule pair three
times.

	'novary|NV' (no vary)

	
If a HTTP header is used in the condition, this flag prevents this
header from being added to the Vary header of the response.

Using this flag might break proper caching of the response if the
representation of this response varies on the value of this header. So
this flag should be only used if the meaning of the Vary header is well
understood.

Examples

	Query Strings .. index

	
rewritemap_int '''''''''''''

 RewriteMap

RewriteMap

The RewriteMap directive gives you a way to call external mapping
routines to simplify a RewriteRule. This external mapping can be a
flat text file containing one-to-one mappings, or a database, or a
script that produces mapping rules, or a variety of other similar
things. In this chapter we’ll discuss how to use a RewriteMap in a
RewriteRule or RewriteCond.

Creating a RewriteMap

The RewriteMap directive creates an alias which you can then invoke in
either a RewriteRule or RewriteCond directive. You can think of it
as defining a function that you can call later on.

The syntax of the RewriteMap directive is as follows:

RewriteMap MapName MapType:MapSource

Where the various parts of that syntax are defined as:

	MapName

	
The name of the 'function' that you’re creating

	MapType

	
The type of the map. The various available map types are discussed
below.

	MapSource

	
The location from which the map definition will be obtained, such as a
file, database query, or predefined function.

The RewriteMap directive must be used either in virtualhost context,
or in global server context. This is because a RewriteMap is loaded at
server startup time, rather than at request time, and, as such, cannot
be specified in a .htaccess file.

Using a RewriteMap

Once you have defined a RewriteMap, you can then use it in a
RewriteRule or RewriteCond as follows:

RewriteMap examplemap txt:/path/to/file/map.txt
RewriteRule ^/ex/(.*) ${examplemap:$1}

Note in this example that the RewriteMap, named 'examplemap', is
passed an argument, $1, which is captured by the RewriteRule
pattern. It can also be passed an argument of another known variable.
For example, if you wanted to invoke the examplemap map on the entire
requested URI, you could use the variable %{REQUEST_URI} rather than
$1 in your invocation:

RewriteRule ^ ${examplemap:%{REQUEST_URI}}

RewriteMap Types

There are a number of different map types which may be used in a
RewriteMap.

int

An int map type is an internal function, pre-defined by mod_rewrite
itself. There are four such functions:

toupper

The toupper internal function converts the provided argument text to
all upper case characters.

Convert any lower-case request to upper case and redirect
RewriteMap uc int:toupper
RewriteRule (.*?[a-z]+.*) ${uc:$1} [R=301]

tolower

The tolower is the opposite of toupper, converting any argument text
to lower case characters.

Convert any upper-case request to lower case and redirect
RewriteMap lc int:tolower
RewriteRule (.*?[A-Z]+.*) ${lc:$1} [R=301]

escape

unescape

txt

A txt map defines a one-to-one mapping from argument to target.

rnd

A rnd map will randomly select one value from the specified text file.

dbm

prg

dbd

 Proxying with mod_rewrite

Proxies and mod_rewrite

 Virtual Hosts with mod_rewrite

Virtual hosts and mod_rewrite

 Access Control with mod_rewrite

Access control with mod_rewrite

 If, and other Configuration Configuration

Conditional Configuration

Introduction

While the Apache httpd configuration files have always had some ways to
make things conditional, with the advent of version 2.4, there’s an
explosion in the ways that you can make your configuration file reactive
and programmable. That is, you can make your configuration more
responsive to the specifics of the request that it servicing.

In this part of the book, we discuss some of this functionality. Some of
it is specific to version 2.4 and later, while some of it has been
available for years.

Match Directives

FilesMatch, RedirectMatch, etc.

IfDefine

The IfDefine directive provides a way to make blocks of your
configuration file optional, depending on the presence, or absence, of
an appropriate command-line switch. Specifically, a configuration block
wrapped in an <IfDefine XYZ> container will be invoked if and only if
the server is started up with a -D XYZ command line switch.

Consider, for example a configuration as follows:

<IfDefine TEST>
 ServerName test.example.com
</IfDefine>
<IfDefine !TEST>
 ServerName www.example.com
</IfDefine>

Now, you can start the server with a -D TEST command line option:

httpd -D TEST -k restart

This will result in the first of the two IfDefine blocks being loaded.
Conversely, if you omit the -D TEST flag, the server will start with
the second of the two IfDefine blocks loaded.

This gives the ability to keep several configurations in the same file,
and load various components on demand. You could even deploy the same
configuration file to several different servers, but start each with
different command line flags (you can specify more than one -D flag at
startup) to start the servers up in different configurations.

<IfDefine> blocks can be nested, so that you can combine several
conditions, as seen in this example from the docs:

<IfDefine ReverseProxy>
 LoadModule proxy_module modules/mod_proxy.so
 LoadModule proxy_http_module modules/mod_proxy_http.so
 <IfDefine UseCache>
 LoadModule cache_module modules/mod_cache.so
 <IfDefine MemCache>
 LoadModule mem_cache_module modules/mod_mem_cache.so
 </IfDefine>
 <IfDefine !MemCache>
 LoadModule cache_disk_module modules/mod_cache_disk.so
 </IfDefine>
 </IfDefine>
</IfDefine>

You could then, for example, start the server up with:

httpd -DReverseProxy -DUseCache -DMemCache -k restart

(The space between -D and the flag is optional.)

Define

New with the 2.3 (and later) version of the server is the Define
directive, which lets you define variables within the configuration
file, which can then be used later on in the configuration, either as
part of a configuration directive, or in an <IfDefine …> directive.

Consider this variation on the earlier example:

<IfDefine TEST>
 Define servername test.example.com
</IfDefine>
<IfDefine !TEST>
 Define servername www.example.com
 Define SSL
</IfDefine>

DocumentRoot /var/www/${servername}/htdocs

A variable VAR defined with the Define directive can then be used
later using the ${VAR} syntax, as shown here. In the case where no
value is given (see the line Define SSL) the variable is set to
TRUE, which can then be tested later using an <IfDefine> test.

In this example, as before, the server should be started with a -DTEST
command line option to use the first definition of servername and
without it to use the second.

Or you can use a Define directive to define something, such as a file
path, which is then used several times in the configuration:

Define docroot /var/www/vhosts/www.example.com

DocumentRoot ${docroot}

<Directory ${docroot}>
 Require all granted
</Directory>

<If>, <Elsif>, and <Else>

New in Apache httpd 2.4 is the ability to put <If> blocks in your
configuration file to make it truly conditional. This provides a level
of flexibility that was never before available.

Whereas the <IfDefine> and <Define> directives are evaluated at
server startup time, <If> is evaluated at request time, giving you the
chance to make configuration dependant on values that may change from
one HTTP request to another. Naturally, this results in some
request-time overhead, but the flexibility that you gain may be worth
this to you in some situations.

Consider the following examples to give you some ideas:

Canonical hostname

In many situations, it is desirable to enforce a particular hostname on
your website. For example, if you are setting cookies, you need to
ensure that those cookies are valid for all requests to your site, which
requires that the hostname being accessed match the hostname on the
cookie itself. So, when someone accesses your site using the hostname
example.com, you want to redirect that request to use the hostname
www.example.com.

In previous versions of httpd, you may have used mod_rewrite to
perform this redirection, but <If> provides a more intuitive syntax:

Compare the host name to example.com and
redirect to www.example.com if it matches
<If "%{HTTP_HOST} == 'example.com'">
 Redirect permanent / http://www.example.com/
</If>

Image hotlinking

You may wish to prevent another website from embedding your images in
their pages - so-called image hotlinking. This is usually done by
comparing the HTTP_REFERER variable on a request to these images to
ensure that the request originated within a page on your site:

Images ...
<FilesMatch "\.(gif|jpe?g|png)$">
 # Check to see that the referer is right
 <If "%{HTTP_REFERER} !~ /example.com/" >
 Require all denied
 </If>
</FilesMatch>

mod_macro

mod_macro has been around for a while, but with the 2.4 version of the
server it is now one of the modules that comes with the server itself,
rather than being a third-party module obtained and installed
separately.

It provides the ability - as the name suggests - to create macros within
your configuration file, which can then be invoked multiple times, in
order to produce several similar configuration blocks. Parameters can be
provided to fill in the variables in those macros.

Macros are evaluated at server startup time, and the resulting
configuration is then loaded as though it was a static configuration
file on disk.

mod_proxy_express

mod_vhost_alias

Conditional logging

env=

Per-module logging

Per-directory logging

Piped logging

 Content Munging Modules

Content Munging

While mod_rewrite modifies aspects of the HTTP request - most commonly
the REQUEST_URI, sometimes you want to modify the content which is
served to the client. There are several modules that do this, which can
be used in a variety of circumstances.

We’re going to look at three of these modules, and then at Filters in
general.

mod_substitute

mod_sed

mod_proxy_html

Filters

 INDEX

Index

autoindex1.png
Index of /files

Name Last modified ~ Size Deseription
& Bazent Dirccto -
(3 Contents/ 2013042521558 -

DSCN1259.JPG 2013-04-25 21:58 431K
DoorJPG 2013-04-25 21:58 2.7M

[?) Newlnzadey 2013-04-2521:57 3.4M
() images’ 2013042521557 -
W) indexxmlez 2013-04-2521:58 38K
(23 thumbs/ 2013042521358 -

cover.jpg
Sample Book Cover

