


1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

Table	of	Contents
Introduction

Regular	Expressions

URL	Mapping

Rewrite	Logging

RewriteRule	flags

RewriteCond

RewriteMap

Proxying	with	mod_rewrite

Virtual	Hosts	with	mod_rewrite

Access	Control	with	mod_rewrite

If,	and	other	Configuration	Configuration

Content	Munging	Modules

Recipes

Appendix

2



Table	of	Contents
mod_rewrite	And	Friends
About	This	Book

How	this	book	is	organized
Other	Sources	of	Wisdom
Technical	details
Contact	information,	and	errata	reporting
About	the	Author
Acknowledgements

mod_rewrite	And	Friends

	mod_rewrite		is	one	of	the	most	powerful,	and	least	understood,	of	the	modules	that	are	provided	with	the	Apache	HTTP	Server.
It	is	frequently	misused	to	do	things	that	can	be	done	so	much	better	other	ways.

Thousands	of	examples	are	posted	daily	on	various	websites,	showing	beginners	how	to	do	things	with	 	mod_rewrite	,	and,
unfortunately,	the	vast	majority	of	them	are	wrong	in	various	ways,	subtle	or	grevious,	due	to	misunderstandings	of	how
	mod_rewrite		works,	or	how	regular	expressions	work.

This	book	is	intended	to	help	you	understand	 	mod_rewrite		deeply,	so	that	you	know	when	and	how	to	use	it,	as	well	as	when	not
to	use	it,	and	what	to	use	instead.

About	This	Book
The	first	incarnation	of	this	book,	[The	Definitive	Guide	to	Apache	mod_rewrite](http://drbacchus.com/book/rewrite/),	was
published	in	2006.	Since	then,	so	much	has	changed	that	while	that	book	is	still	useful,	it’s	far	from	complete.

In	February	of	2012,	Apache	httpd	version	2.4	was	released,	with	a	huge	number	of	enhancements	and	changes.	Many	of	the
things	that	people	have	been	using	 	mod_rewrite		for	now	have	better	solutions.	Meanwhile,	 	mod_rewrite		itself	improved	quite
a	bit,	too,	and	can	do	many	new	things.

This	book	still	focuses	primarily	on	 	mod_rewrite	,	but	will	touch	on	many	of	the	surrounding	topics	and	modules.

That	said,	the	scope	of	this	book	has	expanded	(since	the	earlier	incarnation)	to	include	not	merely	URL	rewriting,	but	also
methods	for	munging	(modifying)	content,	and	dynamic	conditional	configuration.	In	many	cases,	these	techniques	make
mod_rewrite	unnecessary,	or,	at	least,	provide	easier	alternatives,	so	they	fit	the	scope	of	the	book	very	well.

These	techniques	include	mod_substitute,	mod_proxy_html,	the	 	Define		directive,	the	 	<If>		container,	 	mod_macro	,	and	many
more.	Along	the	way,	we’ll	also	discuss	the	various	parts	of	URL	mapping,	the	understanding	of	which	allows	you	to	avoid	using
these	more	complicated	techniques.

How	this	book	is	organized

This	book	consists	of	14	chapters.	Depending	on	your	level	of	existing	expertise,	some	of	them	can	be	safely	skipped.

Chapter	1	-	Regular	Expressions	-	This	chapter	gives	an	introduction	to	regular	expressions,	which	are	the	language	of
	mod_rewrite	.

Chapter	2	-	URL	Mapping	-	URL	rewriting	is	a	portion	of	a	larger	topic	called	URL	mapping	-	the	process	by	which	Apache	httpd
translates	a	requested	URL	into	an	actual	resource	that	it	will	serve.

Chapter	3	-	An	introduction	to	 	mod_rewrite		-	covering	some	of	the	configuration	directives	that	need	to	be	set	up	before	you
start	rewriting.

Introduction

3

http://drbacchus.com/book/rewrite/


Chapter	4	-	RewriteRule	-	The	 	RewriteRule		directive	is	the	one	you’ll	be	using	most	often.	This	chapter	covers	its	syntax	and
usage.

Chapter	5	-	Rewrite	Logging	-	The	rewrite	log	is	a	great	debugging	tool,	and	also	a	good	way	to	learn	about	how	 	mod_rewrite	
thinks	about	things.

Chapter	6	-	RewriteRule	flags	-	Flags	modify	the	behavior	of	 	RewriteRule	.	They’ve	been	introduced	in	the	previous	chapter,	but
this	chapter	covers	each	flag	in	detail,	with	examples.

Chapter	7	-	RewriteCond	-	 	RewriteCond		allows	you	to	put	conditions	on	the	running	of	a	particular	 	RewriteRule	.

Chapter	8	-	RewriteMap	-	The	 	RewriteMap		directive	allows	you	to	craft	your	own	 	RewriteRule		logic	and	lookup	tables.

Chapter	9	-	Proxying	with	mod_rewrite	-	 	RewriteRule’s	`[P]		flag	lets	you	pass	a	request	through	a	proxy.	This	chapter	digs
into	that	in	greater	detail.

Chapter	10	-	Virtual	hosts	with	mod_rewrite	-	Using	 	RewriteRule		to	manage	virtual	hosts.

Chapter	11	-	Access	control	with	mod_rewrite	-	Using	 	RewriteRule		to	control	or	restrict	access	to	resources.

Chapter	12	-	Configurable	Configuration	-	New	in	version	2.4	of	the	web	server	is	a	class	of	directives	that	let	you	add
intelligence	and	request-time	decisions	to	the	configuration.	These	techniques	replace	many	of	the	things	that	people	used	to	use
	mod_rewrite		for.

Chapter	13	-	Content	Modification	Modules	-	In	this	chapter,	we	discuss	rewriting	content	sent	to	the	client,	which	is	not
something	that	 	mod_rewrite		does.

Chapter	14	-	Recipes	-	Recipes,	and	detailed	discussions	of	them,	addressing	common	problems	and	solutions.

Other	Sources	of	Wisdom

A	brief	word	about	the	documentation.	The	official	docs,	at	http://httpd.apache.org/docs/current,	are	great,	and	are	the	work	of
many	dedicated	people.	I’m	one	of	many.	This	book	is	intended	to	augment	those	docs,	and	not	replace	them.	If	it	appears
sometimes	that	I	have	copied	shamelessly	from	the	documentation,	I	humbly	ask	you	to	remember	that	I	participated	in	writing
those	docs,	and	the	edits	flowed	both	directions — that	is,	sometimes	it	was	the	docs	that	shamelessly	copied	from	the	book.

This	book	does	not	attempt	to	be	a	comprehensive	book	about	the	Apache	web	server.	For	that,	I	encourage	you	to	look	the
documentation	and	also	at	my	other	book,	Apache	Cookbook,	Third	Edition,	by	Rich	Bowen	and	Ken	Coar,	which	should	be
available	around	the	same	time	that	this	book	is	published.

You	should	also	acquire	a	copy	of	Jeffrey	Friedl’s	excellent	book,	Mastering	Regular	Expressions	-
http://shop.oreilly.com/product/9780596528126.do	While	the	book	is	several	years	old,	it	is	still	the	best	book	on	the	topic.

Technical	details

This	book	was	written	in	Markdown,	using	vim — <https://www.vim.org/> — and	built	using	gitbook 
— https://toolchain.gitbook.com/.

Previous	incarnations	were	written	in	LaTeX,	ReStructuredText,	AsciiDoc,	and	who	knows	what	else.	There	always	seems	to	be	a
new	book	format	out	there.	It’s	exhausting.

You	can	always	obtain	the	most	recent	version	of	the	book	at	http://mod-rewrite.org/,	and	you’ll	usually	be	able	to	buy	a	fairly
recent	version	in	the	Amazon	Kindle	store.	Some	day,	there	will	hopefully	be	a	printed	version,	too.

Contact	information,	and	errata	reporting

Introduction

4

http://httpd.apache.org/docs/current
http://shop.oreilly.com/product/9780596528126.do
https://www.vim.org/> — and
https://toolchain.gitbook.com/
http://mod-rewrite.org/


If	you’d	like	to	get	involved	in	the	creation	of	this	book,	or	if	you’d	like	to	tell	me	about	something	that	needs	fixed,	Go	to	GitHub
-	https://github.com/rbowen/mod_rewrite_book	-	and	either	submit	pull	requests	or	open	a	ticket.	If	you	don’t	know	what	that
means,	you	are	welcome	to	submit	errata	to	<rbowen@rcbowen.com>,	and	some	day	there	will	be	a	handy	way	to	do	this	on	the
website.	Not	today.

This	book	is	a	work	in	progress.	If	you	purchased	the	book	in	electronic	form,	you	should	be	eligible	to	receive	updates	from
wherever	you	bought	it.	If	you’re	not,	send	me	your	email	receipt	<rbowen@rcbowen.com>,	and	I’ll	send	you	an	updated	version.

About	the	Author

Rich	Bowen	has	been	involved	on	the	Apache	http	server	documentation	since	about	1998.	He	is	also	the	author	of	Apache
Cookbook,	and	The	Definitive	Guide	to	Apache	mod_rewrite.	You	can	frequently	find	him	in	\#httpd,	on	 	irc.freenode.net	.
under	the	name	of	 	DrBacchus		or	 	rbowen	.

Rich	works	at	Red	Hat,	in	the	OSAS	(Open	Source	and	Standards)	group,	where	he	is	an	Open	Source	Community	Manager.	See
http://community.redhat.com/	for	details.

He	lives	in	Lexington,	Kentucky,	with	his	wife	and	kids.

Acknowledgements

Thanks	to	 	fajita	,	and	the	other	regulars	on	#httpd	(on	the	 	irc.freenode.net		network).	 	fajita		is	my	research	assistant,	and
knows	more	than	everyone	else	on	the	channel	put	together.	And	the	folks	on	#ahd	who	keep	me	sane.	Or	insane.	Depending	on
how	you	measure.	A	warm	hog	to	each	of	you.

None	of	this	would	be	possible	without	 	mod_rewrite		itself,	so	a	big	thank	you	to	Ralf	Engelschall	for	creating	it,	and	all	the
many	people	who	have	worked	on	the	code	and	documentation	since	then.

Finally,	a	thank	you	to	my	muses,	Rhi,	Z,	and	E.

And	to	Maria,	who	makes	everything	beautiful.	And	so	that	was	all	right,	Best	Beloved.	Do	you	see?

Introduction

5

https://github.com/rbowen/mod_rewrite_book
mailto:rbowen@rcbowen.com
mailto:rbowen@rcbowen.com
http://httpd.apache.org/docs-project
http://community.redhat.com/
https://engelschall.com/


Table	of	Contents
Chapter	1:	Regular	Expressions

The	Building	Blocks
Matching	anything
Escaping	characters
Anchoring	text
Matching	one	or	more	characters
Matching	zero	or	more	characters
Repetition	quantifiers
Greedy	Matching
Making	a	match	optional
Grouping	and	capturing
Backreferences
Character	Classes
Negation
Regex	examples

Email	address
Phone	number
Matching	URIs
Matching	the	homepage
Matching	a	directory
Matching	a	filetype

Regex	tools
Regex	Coach
Reggy
pcretest
Visual	Regexp
Regular	Expression	Tester
Online	tools

RewriteRule	generators
Summary

Chapter	1:	Regular	Expressions

In	the	high	and	far-off	times	the	Elephant,	O	Best	Beloved,	had	no	trunk.

—	Rudyard	Kipling
The	Elephant's	Child

Much	of	the	content	in	this	book	requires	that	you	have	some	mastery	of	regular	expressions.	Indeed,	in	my	years	of	teaching
	mod_rewrite	,	it	has	been	my	observation	that	most	people	don’t	find	 	mod_rewrite		hard	at	all:	they’re	just	intimidated	by
regular	expressions.

There	is	one	excellent	book	about	regular	expressions,	and	if	you	want	to	become	a	regular	expression	(or	"regex")	guru,	you
should	get	it.	That	book	is	Mastering	Regular	Expressions — <http://regex.info/book.html> — by	Jeffrey	Friedl.

If	you	just	want	to	know	enough	about	regex	to	master	mod_rewrite,	read	this	chapter	a	few	times,	and	that	should	be	sufficient.

The	goal	of	this	chapter	is	to	introduce	the	building	blocks	-	the	basic	vocabulary	-	and	then	discuss	some	of	the	arcana	of	crafting
your	own	regular	expressions,	as	well	as	reading	those	that	others	have	bequeathed	to	you.	If	you	are	already	reasonably	familiar
with	regex	syntax,	you	can	safely	skip	this	chapter.

Regular	Expressions

6

http://regex.info/book.html> — by


The	Building	Blocks

Regular	expressions	are	a	means	to	describe	a	text	pattern, 	so	that	you	can	look	for	that	pattern	in	a	block	of	data.	The	best	way
to	read	any	regular	expression	is	one	character	at	a	time,	so	you	need	to	know	what	each	character	represents.

These	are	the	basic	building	blocks	that	you	will	use	when	writing	regular	expressions.	If	you	don’t	already	know	regex	syntax,
you’ll	want	to	stick	a	bookmark	on	this	page,	since	you’ll	be	referring	to	it	until	you	become	familiar	with	these	characters.	The
Regular	Expression	Vocabulary	table	is	your	key	to	translating	a	line	of	seemingly	random	characters	into	a	meaningful	pattern.
The	table	will	be	followed	by	further	explanations	and	examples	for	each	of	the	items	in	the	table.

Table	1.	Regular	Expression	Vocabulary

Character Meaning

	.	 Any	character

	\	

Escapes	a	character	that	has	a	special	meaning.	Thus,	 	\.	
means	a	literal	.	character.	You	can	match	a	literal	 	\	
character	by	using	 	\\	.	Additionally,	placing	 	\		in	front
of	a	regular	character	can	add	a	special	meaning	to	that
character.	For	example,	 	\t		means	a	tab	character.	See
Escaping	characters	for	more	detail	on	that.

	̂ 	

An	anchor	which	insists	that	the	pattern	start	at	the
beginning	of	the	string.	 	̂ A		means	that	the	string	must
start	with	A.

	$	

An	anchor	which	insists	that	the	string	ends	with	the
specified	pattern.	 	X$		means	that	the	string	must	end	with
X.

	+	
Match	the	previous	thing	one	or	more	times.	So	 	a+	
means	one	or	more	a’s.

	*	

Match	the	previous	thing	zero	or	more	times.	This	is	the
same	as	+,	except	that	it’s	also	acceptable	if	the	thing
wasn’t	there	at	all.

	?	

Match	the	previous	thing	zero	or	one	times.	In	other	words,
it	makes	it	optional.	It	also	makes	the	 	*		and	 	+	
characters	non-greedy.	See	Greedy	Matching.

	{n,m}	

Indicates	that	the	previous	thing	should	match	at	least	n,
and	not	more	than	m	times.	For	example,	 	a{2,7}		matches
at	least	2,	and	not	more	than	7,	occurrences	of	the	letter	a

	(	)	

Provides	grouping	and	capturing	functions.	Grouping
means	treating	more	than	one	character	as	though	they
were	a	single	unit.	You	can	apply	repetition	characters	to	a
group	created	in	this	way.	Capturing	means	remembering
the	thing	that	matched,	so	that	we	can	use	it	again	later.
This	is	called	a	'backreference.'

	[	]	

Called	a	"character	class,"	this	matches	only	one	of	the
contained	characters.	For	example,	 	[abc]		matches	a
single	character	which	is	either	a	or	b	or	c.

	̂ 	

Negates	a	match	within	a	character	set.	(Remember	that
outside	of	a	character	class,	it	means	something	else.	See
above.)	Thus,	 	[^abc]		matches	a	single	character	which	is
neither	a	nor	b	nor	c.

[1]

Regular	Expressions

7



	!	 Placed	on	the	front	of	a	regular	expression,	this	means
"NOT".	That	is,	it	negates	the	match,	and	so	succeeds	only
if	the	string	does	not	match	the	pattern.

That’s	not	all	there	is	to	regular	expressions,	but	it’s	a	really	good	starting	point.	Each	regular	expression	presented	in	this	book
will	have	an	explanation	of	what	it’s	doing,	which	will	help	you	see	in	practical	examples	what	each	of	the	above	characters
actually	ends	up	meaning	in	the	wild.	And,	in	my	experience,	regular	expressions	are	understood	much	more	quickly	via	examples
rather	than	via	lectures.

What	follows	is	a	more	detailed	explanation	of	each	of	the	items	in	the	table	above,	with	examples.

Matching	anything

The	 	.		character	in	a	regular	expression	matches	any	character.	For	example,	consider	the	following	pattern:

a.c

That	pattern	matches	a	string	containing	 	a	,	followed	by	any	character,	followed	by	 	c	.	So,	that	pattern	matches	the	strings
"abc",	"ancient",	and	"warcraft",	each	of	which	contain	that	pattern.	It	does	not	match	"tragic",	on	the	other	hand,	because	there
are	two	characters	between	the	a	and	the	c.	That	is,	the	 	.		by	itself,	matches	a	single	character	only.

The	 	.		character	is	very	frequently	used	in	connection	with	 			to	mean	"match	everything".	You’ll	see	the	 	(.)		pattern
appearing	often	throughout	this	book,	and	throughout	examples	that	you	see	online.	And	while	it’s	often	what	you	want,	it’s	just
as	often	used	incorrectly.	Remember	that	while	 	(.*)		matches	any	string,	so	will	the	simpler	and	faster	pattern	 	̂ 		because	every
string	has	a	start	(even	an	empty	string)	and	so	 	̂ 		matches	it.

It’s	faster,	too,	because	while	 	(.)		has	to	match	all	the	way	out	to	the	end	of	the	string,	 	̂ 		only	has	to	note	that	the	string	has	a
beginning,	and	then	it	is	done.	Note	also	that	the	pattern	 	(.)		has	parenthesis	and	therefore	captures	the	matched	string	into	the
variable	 	$1	.	If	you’re	not	planning	to	use	 	$1		in	a	later	substitution,	then	this,	in	addition	to	being	a	waste	of	computation
cycles,	is	a	waste	of	memory.

While	considerations	of	this	kind	probably	won’t	save	you	a	noticeable	amount	of	time,	getting	into	the	habit	of	writing	efficient
regular	expressions	will,	in	the	long	run,	not	only	save	you	these	small	amounts,	but	will	result	in	rules	that	are	easier	to
understand	and	easier	to	maintain,	because	they	match	only	what	you’re	interested	in,	and	nothing	more.

Escaping	characters

The	backslash,	or	escape	character,	either	adds	special	meaning	to	a	character,	or	removes	it,	depending	on	the	context.	For
example,	you’ve	already	been	told	that	the	 	.		character	has	special	meaning.	But	if	you	want	to	match	the	literal	 	.		character,
then	you	need	to	escape	it	with	the	backslash.	So,	while	 	.		means	"any	character,"	 	\.		means	a	literal	"."	character.

Conversely,	some	characters	gain	special	meaning	when	prefixed	by	a	 	\		character.	For	example,	while	s	means	a	literal	"s"
character,	 	\s		means	a	"whitespace"	character.	That	is,	a	space	or	a	tab.

The	Metacharacter	table	below	lists	useful	escape	characters	that	you’ll	see	throughout	the	book	and	can	be	used	as	shorthand
for	more	verbose	patterns.

Table	2.	Metacharacters

Character Meaning

\d Match	any	character	in	the	range	0	-	9

\D Match	any	character	NOT	in	the	range	0	-	9

Regular	Expressions

8



\s Match	any	whitespace	characters	(space,	tab	etc.).

\S Match	any	character	NOT	whitespace	(space,	tab).

\w Match	any	character	in	the	range	0	-	9,	A	-	Z	and	a	-	z

\W Match	any	character	NOT	the	range	0	-	9,	A	-	Z	and	a	-	z

\b
Word	boundary.	Match	any	character(s)	at	the	beginning
( 	\babc	)	and/or	end	( 	abc\b	)	of	a	word,	thus	 	\bcow\b	
will	match	cow	but	not	cows,	but	 	\bcow		will	match	cows.

\B

Not	a	word	boundary.	Match	any	character(s)	NOT	at	the
beginning( 	\Babc	)	and/or	end	( 	cow\B	)	of	a	word,	thus
	\Bcow\B		will	match	scows	but	not	cows,	but	 	cow\B		will
match	coward.

\t Match	a	tab	character

\n Match	a	newline	character

\x
Matches	a	character	with	a	particular	hex	code.	For
example,	 	\x5A		would	match	a	Z,	which	has	a	hex	code	of
5A.

The	term	"metacharacter"	is	often	also	applied	to	characters	such	as	 	.		and	 	$		which	have	special	meanings	within	regular
expressions.

Anchoring	text

Referred	to	as	anchor	characters,	these	ensure	that	a	string	starts	with,	or	ends	with,	a	particular	character,	or	sequence	of
characters.	Since	this	is	a	very	common	need,	these	are	included	in	this	basic	vocabulary.	Consider	the	examples	in	the	`anchor
examples	table`_

Table	3.	Anchor	examples

Example Meaning

	̂ /	 This	matches	any	string	that	starts	with	a	slash

	.jpg$	 This	pattern	matches	any	string	that	ends	with	.jpg.

	/$	

Matches	a	string	that	starts	with,	and	ends	with,	a	slash.
That	is,	it	will	only	match	a	string	that	is	a	single	slash,	and
nothing	else.

	̂ $	
Matched	an	empty	string	-	that	is,	a	string	that	has	nothing
between	its	start	and	its	end.

Remember,	as	you	craft	your	regular	expressions,	that	they	are,	by	default,	a	substring	match.	Which	is	to	say,	a	pattern	of	 	cow	
matches	cow,	scow,	coward,	and	pericowperitis,	because	they	all	contain	"cow"	somewhere	in	them.	Using	the	anchor	characters
allow	you	to	be	more	specific	as	to	what	you	wanted	to	match.	The	 	\b		metacharacter,	introduced	above,	can	also	be	useful	in
some	contexts,	but	perhaps	less	so	when	you’re	dealing	with	URLs.

Matching	one	or	more	characters

Regular	Expressions

9



The	+	character	allows	a	pattern	or	character	to	match	more	than	once.	For	example,	the	following	pattern	will	allow	for	common
misspellings	of	the	word	"giraffe".

giraf+e+

This	pattern	will	allow	one	or	more	f’s,	as	well	as	one	or	more	e’s.	So	it	matches	"girafe",	"giraffe",	and	"giraffee".	It	will	also
match	"girafffffeeeeee".

Be	sure	to	use	 	+		rather	than	 	*		when	you	want	to	ensure	non-empty	matches.

Matching	zero	or	more	characters

The	 	*		character	allows	the	previous	character	to	match	zero	or	more	times.	That	is	to	say,	it’s	exactly	the	same	as	+,	except	that
it	also	allows	for	the	pattern	to	not	match	at	all.	This	is	often	used	when	+	was	meant,	which	can	result	in	some	confusion	when	it
matches	an	empty	string.	As	an	example,	we’ll	use	a	slight	modification	of	the	pattern	used	in	the	above	section:

giraf*e*

This	pattern	matches	the	same	strings	listed	above	("giraffe",	"girafe"	and	"giraffee")	but	will	also	match	the	string	"giraeeeee",
which	contains	zero	"f"	characters,	as	well	as	the	string	"gira",	which	contains	zero	"f"	characters	and	zero	"e"	characters.

Most	commonly,	you’ll	see	it	used	in	conjunction	with	the	.	character,	meaning	"match	anything."	Frequently,	in	that	case,	the
person	using	it	has	forgotten	that	regular	expressions	are	substring	matches.	For	example,	consider	this	pattern:

.*\.gif$

The	intent	of	that	pattern	is	to	match	any	string	ending	in	.gif.	The	 	$		insists	that	it	is	at	the	end	of	the	string,	and	the	 	\		before
the	.	makes	that	a	literal	.	character,	rather	than	the	wildcard	.	character.	In	this	particular	case,	the	 	.*		was	there	to	mean	"starts
with	anything,"	but	is	completely	unnecessary,	and	will	only	serve	to	consume	time	in	the	matching	process.

A	more	useful	example	of	the	 	*		character	is	one	which	checks	for	a	comment	line	in	an	Apache	configuration	file.	The	first	non-
space	character	needs	to	be	a	 	#	,	but	the	spaces	are	optional:

^\s*#

This	pattern,	then,	matches	a	string	that	might	(but	doesn’t	have	to)	begin	with	whitespace,	followed	by	a	 		.	This	ensures	that	the
first	non-space	character	of	the	line	is	a	 		.

Repetition	quantifiers

If	you	want	to	match	a	particular	number	of	times,	you	can	use	the	 	{n,m}		quantifier	to	specify	the	range	of	times	you	wish	to
match.	The	possibilities	of	how	you	can	specify	this	are	shown	in	the	table	below.

Table	4.	Repition	quantifiers

Pattern Meaning

{n} Match	exactly	n	times

{n,} Match	at	least	n	times

{n,m} Match	at	least	n	times,	but	not	more	than	m	times

Regular	Expressions

10



These	repitition	quantifiers	may	be	applied	to	a	single	character,	or	to	a	grouping.	For	example:

\d{1,3}

will	match	1,	2,	or	3	digits.

[abc]{2,5}

Will	match	anywhere	from	2	to	5	instances	of	a,	b,	or	c.

Greedy	Matching

In	the	case	of	all	of	the	repetition	characters	above,	matching	is	greedy.	That	is,	the	regular	expression	matches	as	much	as	it
possibly	can.	That	is,	if	you	apply	the	regular	expression	 	a+		to	the	string	 	aaaa	,	matches	the	entire	string,	and	not	be	satisfied
by	just	the	first	a.	This	is	particularly	important	when	you	are	using	the	 	.*		syntax,	which	can	occasionally	match	more	than	you
thought	it	would.	I’ll	give	some	examples	of	this	after	we’ve	discussed	a	few	more	metacharacters.

On	the	other	hand,	if	you	wish	for	matches	to	not	be	greedy,	you	can	offset	the	greedy	nature	of	the	repetition	character	by	putting
a	 	?		after	it.

Consider,	for	example,	a	scenario	where	I	want	to	match	everything	between	two	slashes	in	a	URL.	I’ll	be	applying	the	regular
expression	to	the	URI	 	/one/two/three/	,	and	I’ll	try	a	greedy,	and	not-greedy,	regular	expression.	The	`table	of	greedy
examples`_	shows	the	results	of	these	patterns.

Table	5.	Examples	of	greedy	matching

Pattern Matches

	/(.*)/	 one/two/three

	/(.*?)/	 one

The	first	regex	is	greedy,	and	matches	as	much	as	it	possibly	can,	going	out	to	the	last	slash.	The	second	is	non-greedy,	and	so
stops	as	early	as	it	can,	when	it	encounters	the	second	slash.

Making	a	match	optional

The	 	?		character	makes	a	single	character	match	optional.	This	is	extremely	useful	for	common	misspellings,	or	elements	that
may,	or	may	not,	appear	in	a	string.	For	example,	you	might	use	it	in	a	word	when	you’re	not	sure	whether	it’s	supposed	to	be
hyphenated:

e-?mail

The	above	pattern	matches	both	"email"	and	"e-mail",	so	that	either	spelling	will	be	accepted.	Likewise,	you	could	use:

colou?r

to	match	the	word	color	both	as	it	is	spelled	in	the	USA,	and	the	way	that	it	is	spelled	in	the	rest	of	the	world.

Additionally,	the	 	?		character	turns	off	the	"greedy"	nature	of	the	 	+		and	 			characters.	Thus,	putting	a	 	?		after	a	 	+		or	a	 		
will	make	it	match	as	little	as	it	possibly	can.	See	Greedy	Matching.

Further	examples	of	the	greedy	vs.	non-greed	behavior	will	follow	once	we	have	learned	about	backreferences.

Regular	Expressions

11



Grouping	and	capturing

Parentheses	allow	you	to	group	several	characters	as	a	unit,	and	also	to	capture	the	results	of	a	match	for	later	use.	The	ability	to
treat	several	characters	as	a	unit	is	extremely	useful	in	pattern	matching.	Think	of	it	as	combining	several	atoms	into	a	single
molecule.	For	example,	consider	this	example:

(abc)+

This	will	look	for	the	sequence	"abc"	appearing	one	or	more	times,	and	so	would	match	the	string	"abc"	and	the	string	"abcabc".

Backreferences

Even	more	useful	is	the	"capturing"	functionality	of	the	parentheses.	Once	a	pattern	has	matched,	you	often	want	to	know	what
matched,	so	that	you	can	use	it	later.	This	is	usually	referred	to	as	"backreferences."

For	example,	you	may	be	looking	for	a	.gif	file,	as	in	the	example	above,	and	you	really	want	to	know	what	.gif	file	you	matched.
By	capturing	the	filename	with	parentheses,	you	can	use	it	later	on:

(.*\.gif)$

In	the	event	that	this	pattern	matches,	we	will	capture	the	matching	value	in	a	special	variable,	 	$1	.	(In	some	contexts,	the
variable	may	be	called	 	%1		instead.)	If	you	have	more	than	one	set	of	parentheses,	the	second	one	will	be	captured	to	the	variable
	$2	,	the	third	to	 	$3	,	and	so	on.	Only	values	up	through	 	$9		are	available,	however.	The	reason	for	this	is	that	 	$10		would	be
ambiguous.	It	might	mean	 	$1	,	followed	by	a	literal	zero	(0),	or	it	might	mean	 	$10	.	Rather	than	providing	additional	syntax	to
disambiguate	this	term,	the	designer	of	mod_rewrite	instead	chose	to	only	provide	backreferences	through	 	$9	.

The	exact	way	in	which	you	can	exploit	this	feature	will	be	more	obvious	later,	once	we	start	looking	at	the	RewriteRule	directive
in	:ref:`RewriteRule`

Consider	these	two	patterns,	applied	to	the	string	"canadian".

c(.*)n

c(.*?)n

The	first	pattern	will	return	with	a	value	of	"anadia"	in	 	$1	,	since	it	will	match	as	much	as	it	possibly	can	between	the	first	c	and
the	last	n	it	sees.	The	second,	on	the	other	hand,	will	return	with	 	$1		set	to	"a",	since	it	is	non-greedy,	and	so	stops	at	the	first	n	it
sees.

TODO	Recommend	the	correct	regex	tool

It	is	instructive	to	acquire	a	tool	such	as	Regex	Coach,	or	Rebug,	mentioned	in	the	Regex	tools	section	below,	and	feed	them	these
patterns	and	strings,	to	watch	them	match	the	different	parts	of	the	string.	Mastering	Regular	Expressions	also	has	a	very
complete	treatment	of	backreferences,	greedy	matching,	and	what	actually	happens	during	the	matching	phase.

Character	Classes

A	character	class	allows	you	to	define	a	set	of	characters,	and	match	any	one	of	them.	There	are	several	built-in	character	classes,
like	the	 	\s		metacharacter	that	you	saw	above.	Using	the	 	[	]		notation	lets	you	define	your	own	custom	character	classes.	As	a
very	simple	example,	consider	the	following:

[abc]

Regular	Expressions

12



This	character	class	matches	the	letter	a,	or	the	letter	b,	or	the	letter	c.	For	example,	if	we	wanted	to	match	the	subset	of	users
whose	usernames	started	with	one	of	those	letters,	we	might	look	for	the	pattern:

/home/([abc].*)

This	combines	several	of	the	characters	that	have	been	described	above.	It	ends	up	matching	a	directory	path	for	that	subset	of
users,	and	the	username	ends	up	in	the	 	$1		variable.	Well,	actually,	not	quite,	as	we’ll	see	in	a	minute,	but	almost.

The	character	class	syntax	also	allows	you	to	specify	a	range	of	characters	fairly	easily.	For	example,	if	you	wanted	to	match	a
number	between	1	and	5,	you	can	use	the	character	class	 	[1-5]	.

Within	a	character	class,	the	 	̂ 		character	has	special	meaning,	if	it	is	the	first	character	in	the	class.	The	character	class	 	[^abc]	
is	the	opposite	of	the	character	class	 	[abc]	.	That	is,	it	matches	any	character	which	is	not	a,	b,	or	c.

Which	brings	us	back	to	the	example	above,	where	we	are	attempting	to	match	a	username	starting	with	a,	b,	or	c.	The	problem
with	the	example	is	that	the	 	*		character	is	greedy,	meaning	that	it	attempts	to	match	as	much	as	it	possibly	can.	If	we	want	to
force	it	to	stop	matching	when	it	reaches	a	slash,	we	need	to	match	only	"not	slash"	characters:

/home/([abc][^/]+)

I’ve	replaced	the	 	.		with	 	[^/]+		which	has	the	effect	that,	rather	than	matching	any	character,	it	matches	only	not-slash
characters.	In	other	words,	it	will	only	match	up	to	a	slash,	or	the	end	of	the	string,	whichever	comes	first.	Also,	I’ve	used	 	+	
instead	of	 		,	since	one-character	usernames	are	typically	not	permitted.	Now,	 	$1		will	contain	the	username,	whereas,	before,	it
could	possibly	have	contained	other	directory	path	components	after	the	username.

Negation

a.	 index::	Negation

b.	 index::	!

Finally,	if	you	wish	to	negate	an	entire	regular	expression	match,	prefix	it	with	!.	This	is	not	consistent	across	all	regular
expression	implementations,	but	can	be	used	in	a	number	of	them.	A	very	common	use	of	this	in	the	context	of	rewrite	rules	will
be	to	indicate	that	you	want	a	pattern	to	apply	to	all	directories	except	for	one.	So,	for	example,	if	we	wanted	to	exclude	the
/images	directory	from	consideration,	we	would	match	the	/images	directory,	but	then	negate	the	match,	thus:

!^/images

This	matches	any	path	not	starting	with	 	/images	.	We’ll	see	more	of	this	kind	of	pattern	match	especially	in	the	chapter
:ref:`Proxying	with	mod_rewrite`.

Regex	examples

a.	 index::	Examples

b.	 index::	Regex	examples

A	few	examples	may	be	instructive	in	your	understanding	of	how	regular	expressions	work.	We’ll	start	with	a	few	of	the	cases
that	you	may	frequently	encounter,	and	suggest	a	few	alternate	solutions	to	each.

Email	address

a.	 index::	Email	address

We’ll	start	with	a	common	favorite.	You	want	to	craft	a	regular	expression	that	matches	an	email	address.	The	general	format	of
an	email	address	is	"something	@	something	dot	something".	When	you	are	crafting	a	regular	expression	from	scratch,	it’s	good
to	express	the	pattern	to	yourself	in	terms	like	this,	because	it’s	a	good	start	towards	writing	the	expression	itself.

Regular	Expressions

13



To	express	this	as	a	regular	expression,	let’s	take	the	component	parts.	The	catch	all	"something"	part	can	likely	be	expressed	as
	.*		and	the	 	.		and	 	@		parts	are	literal	characters.	So,	this	gives	us	a	starting	point	of:

.*@.*\..*

This	is	a	good	start,	and	matches	most	email	addresses.	It	will	probably	match	all	email	addresses.	However,	it	will	also	match	a
lot	of	stuff	that	isn’t	email	addresses,	like	"@@@.@",	"@.com",	and	"This	isn’t	an	em@il	address."	So	we	have	to	try	something
a	little	more	specific.

We	want	to	require	that	the	"something"	before	the	@	sign	is	not	zero	length,	and	contains	certain	types	of	characters.	For
example,	it	should	be	alpha-numeric,	but	may	also	contain	certain	other	special	characters,	like	dot,	underscore,	or	dash.

Fortunately,	PCRE	provides	us	with	a	convenient	way	to	say	"alpha-numeric	characters,",	using	a	named	character	class.	There
are	quite	a	number	of	these,	such	as	 	[:alpha:]		to	match	letters,	 	[:digit:]		to	match	numbers	0	through	9,	and	 	[:alnum:]		to
match	alpha-numeric	characters.

Next,	we	want	to	ensure	that	the	domain	name	part	of	the	pattern	is	alphanumeric	too,	except	that	the	top	level	domain	(tld),	i.e.,
the	last	part	of	the	domain	name,	must	be	letters.

And	we	want	to	allow	an	arbitrary	number	of	dots	in	the	hostname,	so	that	"a.com"	and	"mail.s.ms.uky.edu"	are	both	valid
hostname	portions	of	an	email	address.	So	we	can	say	the	above	description	as:

^[:alnum:]._-]@(\.)[:alpha:]+$

This	is	far	more	specific,	and	will	match	most	valid	email	addresses.	However,	it	will	also	exclude	a	few	edge-cases,	as	well	as
allowing	some	things	that	are	not	valid	addresses,	such	as	invalid	domain	names.

You	should	note	that	this	was	something	of	a	fool’s	errand	-	there	does	not	exist	a	regular	expression	that	matches	all	possible
email	addresses.	Indeed,	I	started	with	this	example	to	give	you	a	flavor	for	just	how	complicated	it	can	be	to	craft	a	pattern	for
something	that	is	not	well	defined.

For	more	discussion	of	writing	regular	expressions	to	match	email	addresses,	simply	search	for	 	email	regex		in	your	favorite
search	engine,	and	you’ll	find	many,	many	articles	about	how	and	why	it	is	impossible.

Phone	number

a.	 index::	Phone	number

Next	we’ll	consider	the	problem	of	matching	a	phone	number.	This	is	much	harder	than	it	would	at	first	appear.	We’ll	assume,	for
the	sake	of	simplicity,	that	we’re	just	trying	to	match	US	phone	numbers,	which	are	10	numbers.

The	number	consists	of	three	numbers,	then	three	more,	then	four	more.	These	numbers	may,	or	may	not,	be	separated	by	a
variety	of	things.	The	first	three	may	or	may	not	be	enclosed	in	parentheses.	So	we’ll	try	something	like	this:

\(?\d{3}\)?[-.	]?\d{3}[-.	]?\d{4}

This	pattern	matches	most	US	phone	numbers,	in	most	of	the	ordinary	formats.	The	first	three	numbers	may	or	may	not	be	in
parentheses,	and	the	blocks	of	numbers	may	or	may	not	be	separated	by	dashes	(-),	dots	(.)	or	spaces.

It	is	still	far	from	foolproof,	because	users	will	come	up	with	ways	to	submit	data	in	unexpected	format.

Let’s	go	though	the	rule	one	piece	at	a	time:

	\(?		-	This	sub-pattern	represents	an	optional	opening	parenthesis.	The	backslash	is	necessary	because	parentheses	already	have
special	meaning	in	regular	expressions.	We	want	to	remove	that	special	meaning,	and	have	a	literal	opening	parenthesis.	The
question	mark	makes	this	character	optional.	That	is,	the	person	entering	the	data	may	or	may	not	enclose	the	first	three	numbers
with	parenthesis,	and	we	want	to	ensure	that	either	one	is	acceptable.

Regular	Expressions

14



	\d{3}		-	 	\d		means	a	digit.	(Remember:	d	for	digit.)	This	can	also	be	written	as	 	[:digit:]	,	but	the	 	\d		notation	tends	to	be
more	common,	for	the	simple	reason	that	it’s	less	to	type.	The	 	{3}		following	the	 	\d		indicates	that	we	want	to	match	the
character	exactly	three	times.	That	is,	we	require	three	digits	in	this	portion	of	the	match,	or	it	will	return	failure.

See	the	section	Repetition	quantifiers	for	the	various	syntaxes	you	can	use	to	indicate	the	number	of	repetitions	you	want.

	\)?		-	Like	the	opening	parenthesis	we	started	with,	this	is	an	optional	closing	parenthesis.

	[-.	]?		-	Another	optional	character,	this	allows,	but	does	not	require,	a	dash,	a	dot,	or	a	space,	to	appear	between	the	first	three
numbers	and	the	next	three	numbers.

If	you	discover	that	your	users	are	separating	blocks	with,	say,	an	underscore,	you	could	modify	this	part	of	the	pattern	to	be	 	[-._
]		instead,	to	include	this	new	character.

The	rest	of	the	expression	is	exactly	the	same	as	what	we	have	already	done,	except	that	the	last	block	of	numbers	contains	4
numbers,	rather	than	three.

The	next	step	in	crafting	a	regular	expression	is	to	think	of	the	ways	in	which	your	pattern	will	break,	and	whether	it	is	worth	the
additional	work	to	catch	these	edge	cases.	For	example,	some	users	will	enter	a	1	before	the	entire	number.	Some	phone	numbers
will	have	an	extension	number	on	the	end.	And	that	one	hard-to-please	user	will	insist	on	separating	the	numbers	with	a	slash
rather	than	one	of	the	characters	we	have	specified.	These	can	probably	be	solved	with	a	more	complex	regex,	but	the	increased
complexity	comes	at	the	price	of	speed,	as	well	as	a	loss	of	readability.	It	took	a	page	to	explain	what	the	current	regex	does,	and
that’s	at	least	some	indication	of	how	much	time	it	would	take	you	to	decipher	a	regex	when	you	come	back	to	it	in	a	few	months
and	have	forgotten	what	it	is	supposed	to	be	doing.

Matching	URIs

Finally,	since	this	is,	after	all,	a	book	about	mod_rewrite,	it	seems	reasonable	to	give	some	examples	of	matching	URIs,	as	that	is
what	you	will	primarily	be	doing	for	the	rest	of	the	book.

Most	of	the	directives	that	we	will	discuss	in	the	remainder	of	the	book,	take	regular	expressions	as	one	of	their	arguments.	And,
much	of	the	time,	those	regular	expressions	will	describe	a	URI,	which	is	the	technical	term	for	the	resource	that	was	requested
from	your	server.	And	most	of	the	time,	that	means	everything	after	the	http://www.domain.com	part	of	the	web	address.

I’ll	give	several	common	examples	of	things	that	you	might	want	to	match.

Matching	the	homepage

Very	frequently,	people	will	want	to	match	the	home	page	of	the	website.	Typically,	that	means	that	the	requested	URI	is	either
nothing	at	all,	or	is	/,	or	is	some	index	page	such	as	/index.html	or	/index.php.	The	case	where	it	is	nothing	at	all	would	be	when
the	requested	address	was	http://www.example.com	with	no	trailing	slash.

First,	I’ll	consider	the	case	where	they	request	either	http://www.example.com	or	http://www.example.com/	(ie,	with	or	without
the	trailing	slash,	but	with	no	file	requested).	In	other	words,	we	want	to	match	an	optional	slash.

As	you	probably	remember	from	earlier,	you	use	the	 	?		character	to	make	a	match	optional.	Thus,	we	have:	 	̂ /?$	

This	matches	a	string	that	starts	with,	and	ends	with,	an	optional	slash.	Or,	stated	differently,	it	matches	either	something	that
starts	ends	with	a	slash,	or	something	that	starts	and	ends	with	nothing.

Next,	we	introduce	the	additional	complexity	of	the	file	name.	That	is,	we	want	to	match	any	of	the	following	four	strings:

The	empty	string	-	that	is,	they	requested	http://www.example.com	with	no	trailing	slash.

/	-	they	requested	http://www.example.com/	with	a	trailing	slash.

/index.html

/index.php

Regular	Expressions

15

http://www.domain.com
http://www.example.com
http://www.example.com
http://www.example.com/
http://www.example.com
http://www.example.com/


We’ll	build	on	the	regex	that	we	had	last	time,	adding	these	additional	requirements:

^/?(index\.(html|php))?$

This	isn’t	quite	right,	as	you’ll	see	in	a	moment,	but	it’s	mostly	right.	It	does,	however,	introduce	a	new	syntax	that	hasn’t	been
mentioned	heretofore.	That	is	the	 	|		syntax,	which	has	the	fancy	name	of	"alternation"	and	means	"one	or	the	other."	So
(html|php)	means	"either	'html'	or	'php'."

So,	we’ve	got	a	regex	that	means	a	string	that	starts	with	a	slash	(optional)	followed	by	index.,	followed	by	either	 	html		or	 	php	,
and	that	entire	string	(starting	with	the	index)	is	also	optional,	and	then	the	string	ends.

The	one	problem	with	this	regex	is	that	it	also	matches	the	strings	'index.php'	and	'index.html',	without	a	leading	slash.	While,
strictly	speaking,	this	is	incorrect,	in	the	actual	context	of	matching	a	URI,	it	is	probably	fine,	in	most	scenarios,	to	ignore	that
particular	technicality.	Note,	however,	that	there	are	lots	of	people	who	spend	a	lot	of	time	trying	to	figure	out	how	to	exploit
technicalities	like	this,	so	be	careful.

Matching	a	directory

a.	 index::	Directory

If	you	wanted	to	find	out	what	directory	a	particular	requested	URI	was	in,	or,	perhaps,	what	keyword	it	started	with,	you	need	to
match	everything	up	to	the	first	slash.	This	will	look	something	like	the	following:

/]+)

This	regex	has	a	number	of	components.	First,	there’s	the	standard	 	̂ /		which	we’ll	see	a	lot,	meaning	"starts	with	a	slash."
Following	that,	we	have	the	character	class	 	[^/]	,	which	will	match	any	"not	slash"	character.	This	is	followed	by	a	+	indicating
that	we	want	one	or	more	of	them,	and	enclosed	in	parentheses	so	that	we	can	have	the	value	for	later	observation,	in	 	$1	.

Matching	a	filetype

For	the	third	example,	we’ll	try	to	match	everything	that	has	a	particular	file	extension.	This,	too,	is	a	very	common	need.	For
example,	we	want	to	match	everything	that	is	an	image	file.	The	following	regex	will	do	that,	for	the	most	common	image	types:

\.(jpg|gif|png)$

Later	on,	you’ll	see	how	to	make	this	case	insensitive,	so	that	files	with	upper-case	file	extensions	are	also	matched.

Regex	tools

TODO	Ensure	that	these	tools	all	still	exist.

If	you’re	going	to	spend	more	than	just	a	little	time	messing	with	regexes,	you’re	eventually	going	to	want	a	tool	that	helps	you
visualize	what’s	going	on.	There	are	a	number	of	them	available,	each	of	which	has	different	strengths	and	weaknesses.	You’ll
find	that	most	of	the	really	good	tools	for	regular	expression	development	come	out	of	the	Perl	community,	where	regular
expressions	are	particularly	popular,	and	tend	to	get	used	in	almost	every	program.

Regex	Coach

Regex	Coach	is	available	for	Windows	and	Linux,	and	can	be	downloaded	from	http://www.weitz.de/regex-coach.	Regex	Coach
allows	you	to	step	through	a	regular	expression	and	watch	what	it	does	and	does	not	match.	This	can	be	extremely	instructive	in
learning	to	write	your	own	regular	expressions.

TODO

/([

Regular	Expressions

16

http://www.weitz.de/regex-coach


SCREENSHOT

Regex	Coach	is	free,	but	it	is	not	Open	Source.

Reggy

Reggy	is	a	Mac	OS	X	application	that	provides	a	simple	interface	for	crafting	and	testing	regular	expressions.	It	will	identify	what
parts	of	a	string	are	matched	by	your	regular	expression.

Reggy	is	available	at	http://code.google.com/p/reggy/	and	is	licensed	under	the	GPL.

TODO
SCREENSHOT

pcretest

pcretest	is	a	command-line	regular	expression	tester	that	is	available	on	most	distributions	of	Linux,	where	it	is	usually	installed
by	default.

In	addition	to	simply	telling	you	whether	a	particular	string	matched	or	not,	it	will	also	tell	you	what	each	of	the	various
backreferences	will	be	set	to.

In	the	SCREENSHOT	you	can	see	what	each	of	the	various	backreferences	will	be	set	to	once	the	regular	expression	has	been
evaluated.

TODO:	Screen	shot

Visual	Regexp

Visual	Regexp,	available	at	http://laurent.riesterer.free.fr/regexp/,	has	more	features	than	the	options	listed	above,	and	might	be	a
good	option	once	you	have	mastered	the	basics	of	regular	expressions	and	are	ready	to	move	onto	something	a	little	more
sophisticated.	It	shows	backreferences,	and	offers	a	wide	variety	of	suggestions	to	help	build	a	regex.

Visual	Regexp	is	available	as	a	Windows	executable	or	as	a	Tcl/Tk	script.

TODO
SCREENSHOT

Regular	Expression	Tester

Rather	than	being	a	stand-alone	application	like	the	others	listed	above,	this	is	a	Firefox	plugin.	It’s	available	at
https://addons.mozilla.org/en-US/firefox/addon/2077,	and,	of	course,	requires	Firefox	to	work.

Online	tools

a.	 index::	Online	regex	testers

In	addition	to	these	tools,	there	are	many	online	tools,	which	you	can	use	without	having	to	download	or	install	anything.	These
are	of	a	wide	variety	of	feature	sets	and	quality,	so	I’d	encourage	you	to	shop	around	a	little	to	find	one	that	seems	to	work	well.
These	appear	and	disappear	on	a	weekly	basis,	and	so	I	can’t	promise	that	these	sites	will	still	be	available	at	the	time	that	you
read	this,	but	here	are	some	that	are	worth	mentioning	at	the	time	of	writing:

RegExr

a.	 index::	RegExr

Regular	Expressions

17

http://code.google.com/p/reggy/
http://laurent.riesterer.free.fr/regexp/
https://addons.mozilla.org/en-US/firefox/addon/2077
http://gskinner.com/RegExr/


http://gskinner.com/RegExr/	-	Includes	a	variety	of	pre-defined	character	classes,	and	the	ability	to	save	your	regular	expressions
for	later	reference.	Requires	Javascript	to	use.

Regex	Pal

a.	 index::	Regex	Pal

http://regexpal.com/	-	Less	full-featured	than	RegExr,	but	sufficient	for	the	purpose	of	crafting	and	testing	regular	expressions	for
the	purpose	of	mod_rewrite,	which	doesn’t	require	replace	functionality	or	multi-line	matches.

RewriteRule	generators

You	may	find	various	websites	that	purport	to	be	RewriteRule	generators.	I	strongly	encourage	you	to	avoid	these,	and	instead	to
learn	how	to	craft	your	own	rules.	I’ve	evaluated	several	of	these	sites,	and	every	one	has	resulted	in	RewriteRule	directives	that
were	either	enormously	inefficient,	or	completely	wrong.

Summary

Having	a	good	grasp	of	Regular	Expressions	is	a	necessary	prerequisite	to	working	with	mod_rewrite.	All	too	often,	people	try	to
build	regular	expressions	by	the	brute-force	method,	trying	various	different	combinations	at	random	until	something	seems	to
mostly	work.	This	results	in	expressions	that	are	inefficient	and	fragile,	as	well	as	a	great	waste	of	time,	and	much	frustration.

Keep	a	bookmark	in	this	chapter,	and	refer	back	to	it	when	you’re	trying	to	figure	out	what	a	particular	regex	is	doing.

Other	recommended	reference	sources	include	the	Perl	regular	expression	documentation,	which	you	can	find	online	at
http://www.perldoc.com/perl5.8.0/pod/perlre.html	or	by	typing	 	perldoc	perlre		at	your	command	line,	and	the	PCRE
documentation,	which	you	can	find	online	at	http://pcre.org/pcre.txt.	This	is	useful	even	if	you’re	using	regex	in	other
implementations	(like	 	mod_rewrite	,	for	example),	since	the	syntax	is	largely	the	same	across	implementations.

1.	technically,	it’s	any	data,	but	in	the	context	of	Apache	httpd,	we’re	primarily	interested	in	text	as	it	appears	in	URLs

Regular	Expressions

18

http://regexpal.com/
http://www.perldoc.com/perl5.8.0/pod/perlre.html
http://pcre.org/pcre.txt


Table	of	Contents
Chapter	2:	URL	Mapping

mod_rewrite
DocumentRoot
Automatic	directory	listings
Alias
Redirect
Location
Virtual	Hosts
Proxying
mod_actions
mod_imagemap
mod_negotiation
File	not	found

Chapter	2:	URL	Mapping

In	this	chapter,	we’ll	discuss	the	various	ways	that	the	Apache	http	server	handles	URL	Mapping.

When	the	Apache	http	server	receives	a	request,	it	is	processed	in	a	variety	of	ways	to	see	what	resource	it	represents.	This
process	is	called	URL	Mapping.

mod_rewrite	is	part	of	this	process,	but	will	be	handled	separately,	since	it	is	a	large	portion	of	the	contents	of	this	book.

The	exact	order	in	which	these	steps	are	applied	may	vary	from	one	configuration	to	another,	so	it	is	important	to	understand	not
only	the	steps,	but	the	way	in	which	you	have	configured	your	particular	server.

mod_rewrite

mod_rewrite	is	perhaps	the	most	powerful	part	of	this	process.	That	is,	of	course,	why	it	features	prominently	in	the	name	of	this
book.	Indeed,	mod_rewrite	spans	several	chapters	of	this	book,	and	has	an	entire	Part	all	its	own,	part	mod_rewrite.

For	now,	we’ll	just	say	that	mod_rewrite	fills	a	variety	of	different	roles	in	the	URL	mapping	process.	It	can,	among	other	things,
modify	a	URL	once	it	is	received,	in	many	different	ways.

While	this	usually	happens	before	the	other	parts	of	URL	mapping,	in	certain	circumstances,	it	can	also	perform	that	rewriting
later	on	in	the	process.

This,	and	much	more,	will	be	revealed	in	the	coming	chapters.

DocumentRoot

The	DocumentRoot	directive	specifies	the	filesystem	directory	from	which	static	content	will	be	served.	It’s	helpful	to	think	of
this	as	the	default	behavior	of	the	Apache	http	server	when	no	other	content	source	is	found.

Consider	a	configuration	of	the	following:

DocumentRoot	/var/www/html

With	that	setting	in	place,	a	request	for	http://example.com/one/two/three.html	will	result	in	the	file
/var/www/html/one/two/three.html	being	served	to	the	client	with	a	MIME	type	derived	from	the	file	name	-	in	this	case,
text/html.

The	DirectoryIndex	directive	specifies	what	file,	or	files,	will	be	served	in	the	event	that	a	directory	is	requested.	For	example,	if
you	have	the	configuration:

URL	Mapping

19

http://example.com/one/two/three.html


The	DirectoryIndex	directive	specifies	what	file,	or	files,	will	be	served	in	the	event	that	a	directory	is	requested.	For	example,	if
you	have	the	configuration:

DocumentRoot	/var/www/html

DirectoryIndex	index.html	index.php

Then	when	the	URL	http://example.com/one/two/	is	requested,	Apache	httpd	will	attempt	to	serve	the	file
/var/www/html/index.html	and,	if	it’s	not	able	to	find	that,	will	attempt	to	serve	the	file	/var/www/html/index.php.

If	neither	of	those	files	is	available,	the	next	thing	it	will	try	to	do	is	serve	a	directory	index.

Automatic	directory	listings

The	module	mod_autoindex	serves	a	file	listing	for	any	directory	that	doesn’t	contain	a	DirectoryIndex	file.	(See	DirectoryIndex
<directoryindex>.)

To	permit	directory	listings,	you	must	enable	the	Indexes	setting	of	the	Options	directive:

Options	+Indexes

See	the	documentation	of	the	Options	http://httpd.apache.org/docs/current/mod/core.html#options	for	further	discussion	of	that
directive.

If	the	Indexes	option	is	on,	then	a	directory	listing	will	be	displayed,	with	whatever	features	are	enabled	by	the	IndexOptions
directive.

Typically,	a	directory	will	look	like	the	example	shown	below.

For	further	discussion	of	the	autoindex	functionality,	consult	the	mod_autoindex	documentation	at
http://httpd.apache.org/docs/current/mod/mod_autoindex.html.

URL	Mapping

20

http://example.com/one/two/
http://httpd.apache.org/docs/current/mod/core.html#options
http://httpd.apache.org/docs/current/mod/mod_autoindex.html


Future	versions	of	this	book	will	include	more	detailed	information	about	directory	listings.

Alias

The	Alias	directive	is	used	to	map	a	URL	to	a	directory	path	outside	of	your	DocumentRoot	directory.

Alias	/icons	/var/www/icons

An	Alias	is	usually	accompanied	by	a	<Directory>	stanza	granting	httpd	permission	to	look	in	that	directory.	In	the	case	of	the
above	Alias,	for	example,	add	the	following:

<Directory	/var/www/icons>

		Require	all	granted

</Directory>

Or,	if	you’re	using	httpd	2.2	or	earlier:

<Directory	/var/www/icons>

		Order	allow,deny

		Allow	from	all

</Directory>

There’s	a	special	form	of	the	Alias	directive	-	ScriptAlias	-	which	has	the	additional	property	that	any	file	found	in	the	referenced
directory	will	be	assumed	to	be	a	CGI	program,	and	httpd	will	attempt	to	execute	it	and	sent	the	output	to	the	client.

CGI	programming	is	outside	of	the	scope	of	this	book.	You	may	read	more	about	it	at
http://httpd.apache.org/docs/current/howto/cgi.html

Redirect

The	purpose	of	the	Redirect	directive	is	to	cause	a	requested	URL	to	result	in	a	redirection	to	a	different	resource,	either	on	the
same	website	or	on	a	different	server	entirely.

The	Redirect	directive	results	in	a	Location	header,	and	a	30x	status	code,	being	sent	to	the	client,	which	will	then	make	a	new
request	for	the	specified	resource.

The	exact	value	of	the	30x	status	code	will	influence	what	the	client	does	with	this	information,	as	indicated	in	the	table	below:

Code Meaning

300 Multiple	Choice	-	Several	options	are	available

301 Moved	Permanently

302 Temporary	Redirect

304 Not	Modified	-	use	whatever	version	you	have	cached

Other	30x	statuses	are	available,	but	these	are	the	only	ones	we’ll	concern	ourselves	with	at	the	moment.

The	syntax	of	the	Redirect	directive	is	as	follows:

Redirect	[status]	RequestedURL	TargetUrl

URL	Mapping

21

http://httpd.apache.org/docs/current/howto/cgi.html


Location

The	<Location>	directive	limits	the	scope	of	the	enclosed	directives	by	URL.	It	is	similar	to	the	<Directory>	directive,	and	starts	a
subsection	which	is	terminated	with	a	</Location>	directive.	<Location>	sections	are	processed	in	the	order	they	appear	in	the
configuration	file,	after	the	<Directory>	sections	and	.htaccess	files	are	read,	and	after	the	<Files>	sections.

<Location>	sections	operate	completely	outside	the	filesystem.	This	has	several	consequences.	Most	importantly,	<Location>
directives	should	not	be	used	to	control	access	to	filesystem	locations.	Since	several	different	URLs	may	map	to	the	same
filesystem	location,	such	access	controls	may	by	circumvented.

The	enclosed	directives	will	be	applied	to	the	request	if	the	path	component	of	the	URL	meets	any	of	the	following	criteria:

The	specified	location	matches	exactly	the	path	component	of	the	URL.	The	specified	location,	which	ends	in	a	forward	slash,	is	a
prefix	of	the	path	component	of	the	URL	(treated	as	a	context	root).	The	specified	location,	with	the	addition	of	a	trailing	slash,	is
a	prefix	of	the	path	component	of	the	URL	(also	treated	as	a	context	root).	In	the	example	below,	where	no	trailing	slash	is	used,
requests	to	/private1,	/private1/	and	/private1/file.txt	will	have	the	enclosed	directives	applied,	but	/private1other	would	not.

<Location	/private1>

				#		...

</Location>

In	the	example	below,	where	a	trailing	slash	is	used,	requests	to	/private2/	and	/private2/file.txt	will	have	the	enclosed	directives
applied,	but	/private2	and	/private2other	would	not.

<Location	/private2/>

				#	...

</Location>

When	to	use	<Location>	Use	<Location>	to	apply	directives	to	content	that	lives	outside	the	filesystem.	For	content	that	lives	in
the	filesystem,	use	<Directory>	and	<Files>.	An	exception	is	<Location	/>,	which	is	an	easy	way	to	apply	a	configuration	to	the
entire	server.	For	all	origin	(non-proxy)	requests,	the	URL	to	be	matched	is	a	URL-path	of	the	form	/path/.	No	scheme,	hostname,
port,	or	query	string	may	be	included.	For	proxy	requests,	the	URL	to	be	matched	is	of	the	form	scheme://servername/path,	and
you	must	include	the	prefix.

The	URL	may	use	wildcards.	In	a	wild-card	string,	 	?		matches	any	single	character,	and	 	*		matches	any	sequences	of
characters.	Neither	wildcard	character	matches	a	/	in	the	URL-path.

Regular	expressions	can	also	be	used,	with	the	addition	of	the	~	character.	For	example:

<Location	~	"/(extra|special)/data">

				#...

</Location>

would	match	URLs	that	contained	the	substring	/extra/data	or	/special/data.	The	directive	<LocationMatch>	behaves	identically	to
the	regex	version	of	<Location>,	and	is	preferred,	for	the	simple	reason	that	~	is	hard	to	distinguish	from	-	in	many	fonts,	leading
to	configuration	errors	when	you’re	following	examples.

		<LocationMatch	"/(extra|special)/data">

				#...

		+

		</LocationMatch>

URL	Mapping

22



The	<Location>	functionality	is	especially	useful	when	combined	with	the	SetHandler	directive.	For	example,	to	enable	status
requests,	but	allow	them	only	from	browsers	at	example.com,	you	might	use:

<Location	/status>

		SetHandler	server-status

		Require	host	example.com

</Location>

Virtual	Hosts

Rather	than	running	a	separate	physical	server,	or	separate	instance	of	httpd,	for	each	website,	it	is	common	practice	run	sites	via
virtual	hosts.	Virtual	hosting	refers	to	running	more	than	one	web	site	on	the	same	web	server.

Virtual	hosts	can	be	name-based	-	that	is,	multiple	hostnames	resolving	to	the	same	IP	address	-	or	IP	based	-	that	is,	a	dedicated
IP	address	for	each	site	-	depending	on	various	factors	including	availability	of	IP	addresses	and	preference.	Name-based	virtual
hosting	is	more	common,	but	there	are	scenarios	in	which	IP-based	hosting	may	be	preferred.

Proxying

TODO

mod_actions

TODO

mod_imagemap

TODO

mod_negotiation

TODO

File	not	found

In	the	event	that	a	requested	resource	is	not	available,	after	all	of	the	above	mentioned	methods	are	attempted	to	find	it	…

TODO

URL	Mapping

23



Table	of	Contents
Chapter	5:	Rewrite	Logging

Chapter	5:	Rewrite	Logging

Exactly	how	you	turn	on	logging	for	mod_rewrite	will	depend	on	what	version	of	the	Apache	http	server	you	are	running.
Logging	got	some	updates	in	the	2.4	release	of	the	server,	and	the	rewrite	log	was	one	of	the	changes	that	happened	at	that	time.

If	you’re	not	sure	what	version	you’re	running,	you	can	get	the	 	httpd		binary	to	tell	you	with	the	 	-v		flag:

httpd	-v

As	with	any	other	logging,	the	log	file	is	opened	when	the	server	is	started	up,	before	the	server	relinquishes	its	root	privileges.
For	this	reason,	the	 	RewriteLog		directive	may	not	be	used	in	 	.htaccess		files,	but	may	only	be	invoked	in	the	server
configuration	file.

2.2	and	earlier

Prior	to	httpd	2.4,	the	way	to	enable	mod_rewrite	logging	is	with	the	 	RewriteLog		and	 	RewriteLogLevel		directives.

The	 	RewriteLog		directive	should	be	set	to	the	location	of	your	rewrite	log	file,	and	the	 	RewriteLogLevel		is	set	to	a	value	from
0	to	5	to	indicate	the	desired	verbosity	of	the	log	file,	with	0	being	no	log	entries,	and	5	being	to	log	every	time	mod_rewrite	even
thinks	about	doing	something.

You’ll	often	find	advice	online	suggesting	that	 	RewriteLogLevel		be	set	to	9	for	maximum	verbosity.	Numbers	higher	than	5
don’t	make	it	more	verbose,	but	they	also	don’t	harm	anything.

RewriteLog	logs/rewrite.log

RewriteLogLevel	5

2.4	and	later

In	the	2.4	version	of	the	server,	many	changes	were	made	to	the	way	that	logging	works.	One	of	these	changes	was	the	addition	of
per-module	log	configurations.	This	rendered	the	 	RewriteLog		directive	superfluous.	So,	from	2.4	on,	rewrite	logging	is	enabled
using	the	 	LogLevel		directive,	specifying	a	 	trace		log	level	for	mod_rewrite.

LogLevel	info	rewrite:trace6

Rewrite	log	entries	will	now	show	up	in	the	main	error	log	file,	as	specified	by	the	 	ErrorLog		directive.

What’s	in	the	Rewrite	log?	-	An	example

The	best	way	to	talk	about	what’s	in	the	rewrite	log	is	to	show	you	some	examples	of	the	kinds	of	things	that	mod_rewrite	logs.

Consider	a	simple	rewrite	scenario	such	as	follows:

RewriteEngine	On

RewriteCond	%{REQUEST_URI}	!index.php

RewriteRule	.	/index.php	[PT,L]

LogLevel	info	rewrite:trace6

#	Or,	in	2.2

Rewrite	Logging

24



#	RewriteLog	Level	5

#	RewriteLog	/var/log/httpd/rewrite.log

This	ruleset	says	"If	it’s	not	already	 	index.php	,	rewrite	it	to	 	index.php	.

Now,	we’ll	make	a	request	for	the	URL	http://localhost/example	and	see	what	gets	logged:

[Thu	Sep	12	20:22:13.363463	2013]	[rewrite:trace2]	[pid	11879]

mod_rewrite.c(468):	[client	127.0.0.1:56623]	127.0.0.1	-	-

[localhost/sid#7f985f445348][rid#7f985f949040/initial]	init	rewrite

engine	with	requested	uri	/example

[Thu	Sep	12	20:22:13.363510	2013]	[rewrite:trace3]	[pid	11879]

mod_rewrite.c(468):	[client	127.0.0.1:56623]	127.0.0.1	-	-

[localhost/sid#7f985f445348][rid#7f985f949040/initial]	applying

pattern	'.'	to	uri	'/example'

[Thu	Sep	12	20:22:13.363525	2013]	[rewrite:trace4]	[pid	11879]

mod_rewrite.c(468):	[client	127.0.0.1:56623]	127.0.0.1	-	-

[localhost/sid#7f985f445348][rid#7f985f949040/initial]	RewriteCond:

input='/example'	pattern='!index.php'	=>	matched

[Thu	Sep	12	20:22:13.363533	2013]	[rewrite:trace2]	[pid	11879]

mod_rewrite.c(468):	[client	127.0.0.1:56623]	127.0.0.1	-	-

[localhost/sid#7f985f445348][rid#7f985f949040/initial]	rewrite

'/example'	->	'index.php'

[Thu	Sep	12	20:22:13.363542	2013]	[rewrite:trace2]	[pid	11879]

mod_rewrite.c(468):	[client	127.0.0.1:56623]	127.0.0.1	-	-

[localhost/sid#7f985f445348][rid#7f985f949040/initial]	local	path

result:	index.php

[Thu	Sep	12	20:22:13.575877	2013]	[rewrite:trace2]	[pid	11881]

mod_rewrite.c(468):	[client	127.0.0.1:56624]	127.0.0.1	-	-

[localhost/sid#7f985f445348][rid#7f985f949040/initial]	init	rewrite

engine	with	requested	uri	/favicon.ico

[Thu	Sep	12	20:22:13.575920	2013]	[rewrite:trace3]	[pid	11881]

mod_rewrite.c(468):	[client	127.0.0.1:56624]	127.0.0.1	-	-

[localhost/sid#7f985f445348][rid#7f985f949040/initial]	applying

pattern	'.'	to	uri	'/favicon.ico'

[Thu	Sep	12	20:22:13.575935	2013]	[rewrite:trace4]	[pid	11881]

mod_rewrite.c(468):	[client	127.0.0.1:56624]	127.0.0.1	-	-

[localhost/sid#7f985f445348][rid#7f985f949040/initial]	RewriteCond:

input='/favicon.ico'	pattern='!index.php'	=>	matched

[Thu	Sep	12	20:22:13.575943	2013]	[rewrite:trace2]	[pid	11881]

mod_rewrite.c(468):	[client	127.0.0.1:56624]	127.0.0.1	-	-

[localhost/sid#7f985f445348][rid#7f985f949040/initial]	rewrite

'/favicon.ico'	->	'index.php'

Rewrite	Logging

25

http://localhost/example


[Thu	Sep	12	20:22:13.575955	2013]	[rewrite:trace2]	[pid	11881]

mod_rewrite.c(468):	[client	127.0.0.1:56624]	127.0.0.1	-	-

[localhost/sid#7f985f445348][rid#7f985f949040/initial]	local	path

result:	index.php

This	is	an	entry	from	a	2.4	server,	and	contains	a	few	elements	that	will	be	missing	from	rewrite	log	entries	for	2.2	and	earlier.

Note	that	I’ve	inserted	linebreaks	between	each	log	entry	for	legibility.	And	speaking	of	legibility,	let’s	consider	one	single	log
entry	to	see	what	the	various	components	mean	before	we	go	any	further.

Let’s	look	at	the	first	log	entry.

:

[Thu	Sep	12	20:22:13.363463	2013]	[rewrite:trace2]	[pid	11879]

mod_rewrite.c(468):	[client	127.0.0.1:56623]	127.0.0.1	-	-

[localhost/sid#7f985f445348][rid#7f985f949040/initial]	init	rewrite

engine	with	requested	uri	/example

That’s	a	lot	to	process	all	at	once,	so	we’ll	break	it	down	one	field	at	a	time.

	[Thu	Sep	12	20:22:13.363463	2013]	

The	date	and	time	when	the	event	occurred.

	[rewrite:trace2]	

The	name	of	the	module	logging,	and	the	loglevel	at	which	it	is	logging.	This	is	2.4-specific

	[pid	1879]	

The	process	id	of	the	httpd	process	handling	this	request.	This	will	be	the	same	across	a	given	request.	Note	that	in	this
example	there	are	two	separate	requests	being	handled,	as	you’ll	see	in	a	moment.

	mod_rewrite.c(468):	

For	in-depth	debugging,	this	is	the	line	number	in	the	module	source	code	which	is	handling	the	current	rewrite.

	[client	127.0.0.1:56623]	

The	client	IP	address,	and	TCP	port	number	on	which	the	request	connection	was	made.

	-	

This	field	contains	the	client’s	username	in	the	event	that	the	request	was	authenticated.	In	this	example	the	request	was	not
authenticated,	so	a	blank	value	is	logged.

	-	

In	the	event	that	the	request	sent	ident	information,	this	will	be	logged	here.	This	hardly	ever	happens,	and	so	this	field	will
almost	always	be	 	-	.

	[localhost/sid#7f985f445348][rid#7f985f949040/initial]	

This	is	the	unique	identifier	for	the	request.

	init	rewrite	engine	with	requested	uri	/example	

Ahah!	Finally!	The	actual	log	message	from	mod_rewrite!

Now	that	you	know	what	all	of	the	various	fields	are	in	the	log	entry,	let’s	just	look	at	the	ones	we	actually	care	about.	Here’s	the
log	file	again,	with	a	lot	of	the	superfluous	information	removed:

init	rewrite	engine	with	requested	uri	/example

applying	pattern	'.'	to	uri	'/example'

RewriteCond:	input='/example'	pattern='!index.php'	=>	matched

rewrite	'/example'	->	'index.php'

[1]

Rewrite	Logging

26



local	path	result:	index.php

init	rewrite	engine	with	requested	uri	/favicon.ico

applying	pattern	'.'	to	uri	'/favicon.ico'

RewriteCond:	input='/favicon.ico'	pattern='!index.php'	=>	matched

rewrite	'/favicon.ico'	->	'index.php'

local	path	result:	index.php

I’ve	removed	the	extraneous	information,	and	split	the	log	entries	into	two	logical	chunks.

In	the	first	bit,	the	requested	URL	 	/example		is	run	through	the	ruleset	and	ends	up	getting	rewritten	to	 	/index.php	,	as	desired.

In	the	second	bit,	the	browser	requests	the	URL	 	/favicon.ico		as	a	side	effect	of	the	initial	request.	 	favicon		is	the	icon	that
appears	in	your	browser	address	bar	next	to	the	URL,	and	is	an	automatic	feature	of	most	browsers.	As	such,	you’re	likely	to	see
mention	of	 	favicon.ico		in	your	log	files	from	time	to	time,	and	it’s	nothing	to	worry	too	much	about.	You	can	read	more	about
favicons	at	http://en.wikipedia.org/wiki/Favicon.

Follow	through	the	log	lines	for	the	first	of	the	two	requests.

First,	the	rewrite	engine	is	made	aware	that	it	needs	to	consider	a	URL,	and	the	 	init	rewrite	engine		log	entry	is	made.

Next,	the	 	RewriteRule		pattern	 	.		is	applied	to	the	requested	URI	 	/example	,	and	this	comparison	is	logged.	In	your
configuration	file,	the	 	RewriteRule		appears	after	the	 	RewriteCond	,	but	at	request	time,	the	 	RewriteRule		pattern	is	applied
first.

Since	the	pattern	does	match,	in	this	case,	we	continue	to	the	 	RewriteCond	,	and	the	pattern	 	!index.php		is	applied	to	the	string
	/example	.	Both	the	pattern	and	the	string	it	is	being	applied	to	are	logged,	which	can	be	very	useful	later	on	in	debugging	rules
that	aren’t	behaving	quite	as	you	intended.	This	log	line	also	tells	you	that	the	pattern	 	matched	.

Since	the	 	RewriteRule		pattern	and	the	 	RewriteCond		both	matched,	we	continue	on	to	the	right	hand	side	of	the	 	RewriteRule	
and	apply	the	rewrite,	and	 	/example		is	rewritten	to	 	index.php	,	which	is	also	logged.	A	final	log	entry	tells	us	what	the	local
path	result	ends	up	being	after	this	process,	which	is	 	index.php	.

This	kind	of	detailed	log	trail	tells	you	very	specifically	what’s	going	on,	and	what	happened	at	each	step.

RewriteRules	in	.htaccess	files	-	An	example

We’ve	previously	discussed	using	mod_rewrite	in	.htaccess	files,	but	it’s	time	to	see	what	this	actually	looks	like	in	practice.	Let’s
replace	the	configuration	file	entry	above	with	a	.htaccess	file	instead,	placed	in	the	root	document	directory	of	our	website.	So,
I’m	going	to	comment	out	several	lines	in	the	server	configuration:

#	RewriteEngine	On

#	RewriteCond	%{REQUEST_URI}	!index.php

#	RewriteRule	.	/index.php	[PT,L]

LogLevel	info	rewrite:trace6

#	Or,	in	2.2

#	RewriteLog	Level	5

#	RewriteLog	/var/log/httpd/rewrite.log

And	instead,	I’m	going	to	place	the	following	.htaccess	file:

RewriteEngine	On

RewriteCond	%{REQUEST_URI}	!index.php

[2]

Rewrite	Logging

27

http://en.wikipedia.org/wiki/Favicon


RewriteRule	.	/index.php	[PT,L]

Now,	see	what	the	log	file	looks	like:

For	the	sake	of	brevity,	let’s	look	at	just	the	actual	log	messages,	and	ignore	all	of	the	extra	information:

[perdir	/var/www/html/]	strip	per-dir	prefix:	/var/www/html/example	->	example

[perdir	/var/www/html/]	applying	pattern	'.'	to	uri	'example'

[perdir	/var/www/html/]	input='/example'	pattern='!index.php'	=>	matched

[perdir	/var/www/html/]	rewrite	'example'	->	'/index.php'

[perdir	/var/www/html/]	forcing	'/index.php'	to	get	passed	through	to	next	API	URI-

to-filename	handler

[perdir	/var/www/html/]	internal	redirect	with	/index.php	[INTERNAL	REDIRECT]

[perdir	/var/www/html/]	strip	per-dir	prefix:	/var/www/html/index.php	->	index.php

[perdir	/var/www/html/]	applying	pattern	'.'	to	uri	'index.php'

[perdir	/var/www/html/]	RewriteCond:	input='/index.php'	pattern='!index.php'	=>	

not-matched

[perdir	/var/www/html/]	pass	through	/var/www/html/index.php

The	first	thing	you’ll	notice,	of	course,	is	that	this	is	much	longer	than	what	we	had	before.	Running	rewrite	rules	in	.htaccess	files
generally	takes	several	more	steps	than	when	the	rules	are	in	the	server	configuration	file,	which	is	one	of	several	reasons	that
using	.htaccess	files	is	so	much	less	efficient	(i.e.,	slower)	than	using	the	server	configuration	file.

Whenever	possible,	you	should	use	the	server	configuration	file	rather	than	.htaccess	files.	(There	are	other	reasons	for	this,	too.)

Next,	you’ll	notice	that	each	log	entry	contains	the	preface:

[perdir	/var/www/html]

	perdir		refers	to	rewrite	directives	that	occur	in	per	directory	context	-	i.e.,	.htaccess	files	or	 	<Directory>		blocks.	They	are
treated	special	in	a	few	different	ways,	as	we’ll	see.

The	first	of	these	is	shown	in	the	first	log	entry:

strip	per-dir	prefix:	/var/www/html/example	->	example

What	that	means	is	that	in	perdir	context,	the	directory	path	is	removed	from	any	string	before	they	are	considered	in	the	pattern
match.	Thus,	rather	than	considering	the	string	 	/example	,	as	we	did	the	first	time	through,	now	we’re	looking	at	the	string
	example	.	While	this	may	seem	trivial	at	this	point,	as	we	proceed	to	more	complex	examples,	that	leading	slash	will	be	the
difference	between	a	pattern	matching	and	not	matching,	so	you	need	to	be	aware	of	this	every	time	you	use	 	.htaccess		files.

The	next	few	lines	of	the	log	proceed	as	before,	except	that	we’re	looking	at	 	example		rather	than	 	/example		in	each	line.
Carefully	compare	the	log	entries	from	the	first	time	through	to	the	ones	this	time.

What	happens	next	is	a	surprise	to	most	first-time	users	of	mod_rewrite.	The	requested	URI	 	example		is	redirected	to	the	URI
	/index.php	,	and	the	whole	process	starts	over	again	with	that	new	URL.	This	is	because,	in	perdir	context,	once	a	rewrite	has
been	executed,	that	target	URL	must	get	passed	back	to	the	URL	mapping	process	to	determine	what	that	URL	maps	to	…	which
may	include	invoking	a	.htaccess	file.

In	this	case,	this	causes	the	ruleset	to	be	executed	all	over	again,	with	the	rewritten	URL	 	/index.php	.

Rewrite	Logging

28



The	remainder	of	the	log	should	look	very	familiar.	It’s	the	same	as	what	we	saw	before,	with	 	/index.php		getting	stripped	to
	index.php		and	run	through	the	paces.	This	time	around,	however,	the	 	RewriteCond		does	not	match,	and	so	the	request	is
passed	through	unchanged.

1.	Future	editions	of	this	book	will	contain	full	examples	from	a	2.2	server,	for	those	still	running	that	version.
2.	Future	editions	of	this	book	will	contain	an	appendix	in	which	several	log	traces	are	explained	in	exhaustive	detail.	I	can	hardly
wait.

Rewrite	Logging

29



Table	of	Contents
Chapter	6:	RewriteRule	Flags

B	-	escape	backreferences
C	-	chain
CO	-	cookie

Domain
Lifetime
Path
Secure
httponly
Example

DPI	-	discardpath
E	-	env
END
F	-	forbidden
G	-	gone
H	-	handler
L	-	last
N	-	next
NC	-	nocase
NE	-	noescape
NS	-	nosubreq
P	-	proxy
PT	-	passthrough
QSA	-	qsappend
QSD	-	qsdiscard
R	-	redirect
S	-	skip
T	-	type

Chapter	6:	RewriteRule	Flags

Flags	modify	the	behavior	of	the	rule.	You	may	have	zero	or	more	flags,	and	the	effect	is	cumulative.	Flags	may	be	repeated
where	appropriate.	For	example,	you	may	set	several	environment	variables	by	using	several	 	[E]		flags,	or	set	several	cookies
with	multiple	 	[CO]		flags.	Flags	are	separated	with	commas:

[B,C,NC,PT,L]

TODO	Rewrite	Flags	should	be	a	separate	chapter

There	are	a	lot	of	flags.	Here	they	are:

B	-	escape	backreferences

The	[B]	flag	instructs	RewriteRule	to	escape	non-alphanumeric	characters	before	applying	the	transformation.

mod_rewrite	has	to	unescape	URLs	before	mapping	them,	so	backreferences	are	unescaped	at	the	time	they	are	applied.	Using	the
B	flag,	non-alphanumeric	characters	in	backreferences	will	be	escaped.	(See	backreferences	for	discussion	of	backreferences.)	For
example,	consider	the	rule:

RewriteRule	^search/(.*)$	/search.php?term=$1

RewriteRule	flags

30



Given	a	search	term	of	 	'x	&	y/z'	,	a	browser	will	encode	it	as	 	'x%20%26%20y%2Fz'	,	making	the	request
	'search/x%20%26%20y%2Fz'	.	Without	the	B	flag,	this	rewrite	rule	will	map	to	 	'search.php?term=x	&	y/z'	,	which	isn’t	a	valid
URL,	and	so	would	be	encoded	as	 	search.php?term=x%20&y%2Fz=	,	which	is	not	what	was	intended.

With	the	B	flag	set	on	this	same	rule,	the	parameters	are	re-encoded	before	being	passed	on	to	the	output	URL,	resulting	in	a
correct	mapping	to	 	/search.php?term=x%20%26%20y%2Fz	.

Note	that	you	may	also	need	to	set	 	AllowEncodedSlashes		to	 	On		to	get	this	particular	example	to	work,	as	httpd	does	not	allow
encoded	slashes	in	URLs,	and	returns	a	404	if	it	sees	one.

This	escaping	is	particularly	necessary	in	a	proxy	situation,	when	the	backend	may	break	if	presented	with	an	unescaped	URL.

C	-	chain

The	 	[C]		or	 	[chain]		flag	indicates	that	the	RewriteRule	is	chained	to	the	next	rule.	That	is,	if	the	rule	matches,	then	it	is
processed	as	usual	and	control	moves	on	to	the	next	rule.	However,	if	it	does	not	match,	then	the	next	rule,	and	any	other	rules	that
are	chained	together,	will	be	skipped.

CO	-	cookie

The	 	[CO]	,	or	 	[cookie]		flag,	allows	you	to	set	a	cookie	when	a	particular	RewriteRule	matches.	The	argument	consists	of	three
required	fields	and	four	optional	fields.

The	full	syntax	for	the	flag,	including	all	attributes,	is	as	follows:

[CO=NAME:VALUE:DOMAIN:lifetime:path:secure:httponly]

You	must	declare	a	name,	a	value,	and	a	domain	for	the	cookie	to	be	set.

Domain

The	domain	for	which	you	want	the	cookie	to	be	valid.	This	may	be	a	hostname,	such	as	www.example.com,	or	it	may	be	a
domain,	such	as	.example.com.	It	must	be	at	least	two	parts	separated	by	a	dot.	That	is,	it	may	not	be	merely	.com	or	.net.	Cookies
of	that	kind	are	forbidden	by	the	cookie	security	model.	You	may	optionally	also	set	the	following	values:

Lifetime

The	time	for	which	the	cookie	will	persist,	in	minutes.	A	value	of	0	indicates	that	the	cookie	will	persist	only	for	the	current
browser	session.	This	is	the	default	value	if	none	is	specified.

Path

The	path,	on	the	current	website,	for	which	the	cookie	is	valid,	such	as	 	/customers/		or	 	/files/download/	.	By	default,	this	is
set	to	 	/		-	that	is,	the	entire	website.

Secure

If	set	to	secure,	true,	or	1,	the	cookie	will	only	be	permitted	to	be	translated	via	secure	(https)	connections.

httponly

RewriteRule	flags

31



If	set	to	HttpOnly,	true,	or	1,	the	cookie	will	have	the	HttpOnly	flag	set,	which	means	that	the	cookie	will	be	inaccessible	to
JavaScript	code	on	browsers	that	support	this	feature.

Example

Consider	this	example:

RewriteEngine	On

RewriteRule	^/index\.html	-	[CO=frontdoor:yes:.example.com:1440:/]

In	the	example	give,	the	rule	doesn’t	rewrite	the	request.	The	'-'	rewrite	target	tells	mod_rewrite	to	pass	the	request	through
unchanged.	Instead,	it	sets	a	cookie	called	'frontdoor'	to	a	value	of	'yes'.	The	cookie	is	valid	for	any	host	in	the	.example.com
domain.	It	will	be	set	to	expire	in	1440	minutes	(24	hours)	and	will	be	returned	for	all	URIs	(i.e.,	for	the	path	'/').

DPI	-	discardpath

The	DPI	flag	causes	the	 	PATH_INFO		portion	of	the	rewritten	URI	to	be	discarded.

This	flag	is	available	in	version	2.2.12	and	later.

In	per-directory	context,	the	URI	each	 	RewriteRule		compares	against	is	the	concatenation	of	the	current	values	of	the	URI	and
	PATH_INFO	.

The	current	URI	can	be	the	initial	URI	as	requested	by	the	client,	the	result	of	a	previous	round	of	mod_rewrite	processing,	or	the
result	of	a	prior	rule	in	the	current	round	of	mod_rewrite	processing.

In	contrast,	the	 	PATH_INFO		that	is	appended	to	the	URI	before	each	rule	reflects	only	the	value	of	 	PATH_INFO		before	this	round
of	mod_rewrite	processing.	As	a	consequence,	if	large	portions	of	the	URI	are	matched	and	copied	into	a	substitution	in	multiple
	RewriteRule		directives,	without	regard	for	which	parts	of	the	URI	came	from	the	current	 	PATH_INFO	,	the	final	URI	may	have
multiple	copies	of	 	PATH_INFO		appended	to	it.

Use	this	flag	on	any	substitution	where	the	 	PATH_INFO		that	resulted	from	the	previous	mapping	of	this	request	to	the	filesystem	is
not	of	interest.	This	flag	permanently	forgets	the	 	PATH_INFO		established	before	this	round	of	mod_rewrite	processing	began.
	PATH_INFO		will	not	be	recalculated	until	the	current	round	of	mod_rewrite	processing	completes.	Subsequent	rules	during	this
round	of	processing	will	see	only	the	direct	result	of	substitutions,	without	any	 	PATH_INFO		appended.

E	-	env

With	the	 	[E]	,	or	 	[env]		flag,	you	can	set	the	value	of	an	environment	variable.	Note	that	some	environment	variables	may	be
set	after	the	rule	is	run,	thus	unsetting	what	you	have	set.

The	full	syntax	for	this	flag	is:

[E=VAR:VAL]

[E=!VAR]

VAL	may	contain	backreferences	(See	section	backreferences)	( 	$N		or	 	%N	)	which	will	be	expanded.

Using	the	short	form

[E=VAR]

you	can	set	the	environment	variable	named	VAR	to	an	empty	value.

RewriteRule	flags

32



The	form

[E=!VAR]

allows	to	unset	a	previously	set	environment	variable	named	VAR.

Environment	variables	can	then	be	used	in	a	variety	of	contexts,	including	CGI	programs,	other	RewriteRule	directives,	or
CustomLog	directives.

The	following	example	sets	an	environment	variable	called	'image'	to	a	value	of	'1'	if	the	requested	URI	is	an	image	file.	Then,
that	environment	variable	is	used	to	exclude	those	requests	from	the	access	log.

RewriteRule	\.(png|gif|jpg)$	-	[E=image:1]

CustomLog	logs/access_log	combined	env=!image

Note	that	this	same	effect	can	be	obtained	using	SetEnvIf.	This	technique	is	offered	as	an	example,	not	as	a	recommendation.

The	 	[E]		flag	may	be	repeated	if	you	want	to	set	more	than	one	environment	variable	at	the	same	time:

RewriteRule	\.pdf$	[E=document:1,E=pdf:1,E=done]

END

Although	the	flags	are	presented	here	in	alphabetical	order,	it	makes	more	sense	to	go	read	the	section	about	the	L	flag	first
(ref{lflag})	and	then	come	back	here.

Using	the	 	[END]		flag	terminates	not	only	the	current	round	of	rewrite	processing	(like	 	[L]	)	but	also	prevents	any	subsequent
rewrite	processing	from	occurring	in	per-directory	(htaccess)	context.

This	does	not	apply	to	new	requests	resulting	from	external	redirects.

F	-	forbidden

Using	the	 	[F]		flag	causes	the	server	to	return	a	403	Forbidden	status	code	to	the	client.	While	the	same	behavior	can	be
accomplished	using	the	Deny	directive,	this	allows	more	flexibility	in	assigning	a	Forbidden	status.

The	following	rule	will	forbid	 	.exe		files	from	being	downloaded	from	your	server.

RewriteRule	\.exe	-	[F]

This	example	uses	the	"-"	syntax	for	the	rewrite	target,	which	means	that	the	requested	URI	is	not	modified.	There’s	no	reason	to
rewrite	to	another	URI,	if	you’re	going	to	forbid	the	request.

When	using	 	[F]	,	an	 	[L]		is	implied	-	that	is,	the	response	is	returned	immediately,	and	no	further	rules	are	evaluated.

G	-	gone

The	 	[G]		flag	forces	the	server	to	return	a	410	Gone	status	with	the	response.	This	indicates	that	a	resource	used	to	be	available,
but	is	no	longer	available.

As	with	the	 	[F]		flag,	you	will	typically	use	the	"-"	syntax	for	the	rewrite	target	when	using	the	 	[G]		flag:

RewriteRule	oldproduct	-	[G,NC]

RewriteRule	flags

33



When	using	 	[G]	,	an	 	[L]		is	implied	-	that	is,	the	response	is	returned	immediately,	and	no	further	rules	are	evaluated.

H	-	handler

Forces	the	resulting	request	to	be	handled	with	the	specified	handler.	For	example,	one	might	use	this	to	force	all	files	without	a
file	extension	to	be	parsed	by	the	php	handler:

RewriteRule	!\.	-	[H=application/x-httpd-php]

The	regular	expression	above	-	 	!\.		-	will	match	any	request	that	does	not	contain	the	literal	.	character.

This	can	be	also	used	to	force	the	handler	based	on	some	conditions.	For	example,	the	following	snippet	used	in	per-server	context
allows	.php	files	to	be	displayed	by	mod_php	if	they	are	requested	with	the	.phps	extension:

RewriteRule	^(/source/.+\.php)s$	$1	[H=application/x-httpd-php-source]

The	regular	expression	above	-	 	̂ (/source/.+\.php)s$		-	will	match	any	request	that	starts	with	 	/source/		followed	by	1	or	n
characters	followed	by	 	.phps		literally.	The	backreference	 	$1		referrers	to	the	captured	match	within	parenthesis	of	the	regular
expression.

L	-	last

The	 	[L]		flag	causes	mod_rewrite	to	stop	processing	the	rule	set.	In	most	contexts,	this	means	that	if	the	rule	matches,	no	further
rules	will	be	processed.	This	corresponds	to	the	last	command	in	Perl,	or	the	break	command	in	C.	Use	this	flag	to	indicate	that
the	current	rule	should	be	applied	immediately	without	considering	further	rules.

If	you	are	using	 	RewriteRule		in	either	.htaccess	files	or	in	 	<Directory>		sections,	it	is	important	to	have	some	understanding	of
how	the	rules	are	processed.	The	simplified	form	of	this	is	that	once	the	rules	have	been	processed,	the	rewritten	request	is	handed
back	to	the	URL	parsing	engine	to	do	what	it	may	with	it.	It	is	possible	that	as	the	rewritten	request	is	handled,	the	.htaccess	file	or
	<Directory>		section	may	be	encountered	again,	and	thus	the	ruleset	may	be	run	again	from	the	start.	Most	commonly	this	will
happen	if	one	of	the	rules	causes	a	redirect	-	either	internal	or	external	-	causing	the	request	process	to	start	over.

It	is	therefore	important,	if	you	are	using	 	RewriteRule		directives	in	one	of	these	contexts,	that	you	take	explicit	steps	to	avoid
rules	looping,	and	not	count	solely	on	the	 	[L]		flag	to	terminate	execution	of	a	series	of	rules,	as	shown	below.

An	alternative	flag,	 	[END]	,	can	be	used	to	terminate	not	only	the	current	round	of	rewrite	processing	but	prevent	any	subsequent
rewrite	processing	from	occurring	in	per-directory	(htaccess)	context.	This	does	not	apply	to	new	requests	resulting	from	external
redirects.

The	example	given	here	will	rewrite	any	request	to	index.php,	giving	the	original	request	as	a	query	string	argument	to
	index.php	,	however,	the	 	RewriteCond		ensures	that	if	the	request	is	already	for	index.php,	the	 	RewriteRule		will	be	skipped.

RewriteBase	/

RewriteCond	%{REQUEST_URI}	!=/index.php

RewriteRule	^(.*)	/index.php?req=$1	[L,PT]

See	the	RewriteCond	chapter	for	further	discussion	of	the	RewriteCond	directive.

N	-	next

The	 	[N]		flag	causes	the	ruleset	to	start	over	again	from	the	top,	using	the	result	of	the	ruleset	so	far	as	a	starting	point.	Use	with
extreme	caution,	as	it	may	result	in	loop.

RewriteRule	flags

34



The	 	[N]		flag	could	be	used,	for	example,	if	you	wished	to	replace	a	certain	string	or	letter	repeatedly	in	a	request.	The	example
shown	here	will	replace	A	with	B	everywhere	in	a	request,	and	will	continue	doing	so	until	there	are	no	more	As	to	be	replaced.

RewriteRule	(.*)A(.*)	$1B$2	[N]

You	can	think	of	this	as	a	while	loop:	While	this	pattern	still	matches	(i.e.,	while	the	URI	still	contains	an	A),	perform	this
substitution	(i.e.,	replace	the	A	with	a	B).

NC	-	nocase

Use	of	the	 	[NC]		flag	causes	the	 	RewriteRule		to	be	matched	in	a	case-insensitive	manner.	That	is,	it	doesn’t	care	whether	letters
appear	as	upper-case	or	lower-case	in	the	matched	URI.

In	the	example	below,	any	request	for	an	image	file	will	be	proxied	to	your	dedicated	image	server.	The	match	is	case-insensitive,
so	that	.jpg	and	.JPG	files	are	both	acceptable,	for	example.

RewriteRule	(.*\.(jpg|gif|png))$	http://images.example.com$1	[P,NC]

NE	-	noescape

By	default,	special	characters,	such	as	 	\&		and	 	?	,	for	example,	will	be	converted	to	their	hexcode	equivalent.	Using	the	 	[NE]	
flag	prevents	that	from	happening.

RewriteRule	^/anchor/(.+)	/bigpage.html#$1	[NE,R]

The	above	example	will	redirect	 	/anchor/xyz		to	 	/bigpage.html#xyz	.	Omitting	the	 	[NE]		will	result	in	the	 	#		being
converted	to	its	hexcode	equivalent,	 	%23	,	which	will	then	result	in	a	404	Not	Found	error	condition.

NS	-	nosubreq

Use	of	the	 	[NS]		flag	prevents	the	rule	from	being	used	on	subrequests.	For	example,	a	page	which	is	included	using	an	SSI
(Server	Side	Include)	is	a	subrequest,	and	you	may	want	to	avoid	rewrites	happening	on	those	subrequests.	Also,	when	mod_dir
tries	to	find	out	information	about	possible	directory	default	files	(such	as	index.html	files),	this	is	an	internal	subrequest,	and	you
often	want	to	avoid	rewrites	on	such	subrequests.	On	subrequests,	it	is	not	always	useful,	and	can	even	cause	errors,	if	the
complete	set	of	rules	are	applied.	Use	this	flag	to	exclude	problematic	rules.

To	decide	whether	or	not	to	use	this	rule:	if	you	prefix	URLs	with	CGI-scripts,	to	force	them	to	be	processed	by	the	CGI-script,
it’s	likely	that	you	will	run	into	problems	(or	significant	overhead)	on	sub-requests.	In	these	cases,	use	this	flag.

Images,	javascript	files,	or	css	files,	loaded	as	part	of	an	HTML	page,	are	not	subrequests	-	the	browser	requests	them	as	separate
HTTP	requests.

P	-	proxy

Use	of	the	 	[P]		flag	causes	the	request	to	be	handled	by	mod_proxy,	and	handled	via	a	proxy	request.	For	example,	if	you
wanted	all	image	requests	to	be	handled	by	a	back-end	image	server,	you	might	do	something	like	the	following:

RewriteRule	/(.*)\.(jpg|gif|png)$	http://images.example.com/$1.$2	[P]

Use	of	the	 	[P]		flag	implies	 	[L]	.	That	is,	the	request	is	immediately	pushed	through	the	proxy,	and	any	following	rules	will	not
be	considered.

RewriteRule	flags

35



You	must	make	sure	that	the	substitution	string	is	a	valid	URI	(typically	starting	with	<http://hostname>)	which	can	be	handled	by
the	mod_proxy.	If	not,	you	will	get	an	error	from	the	proxy	module.	Use	this	flag	to	achieve	a	more	powerful	implementation	of
the	 	ProxyPass		directive,	to	map	remote	content	into	the	namespace	of	the	local	server.

Security	Warning

Take	care	when	constructing	the	target	URL	of	the	rule,	considering	the	security	impact	from	allowing	the	client	influence	over
the	set	of	URLs	to	which	your	server	will	act	as	a	proxy.	Ensure	that	the	scheme	and	hostname	part	of	the	URL	is	either	fixed,	or
does	not	allow	the	client	undue	influence.

Performance	warning

Using	this	flag	triggers	the	use	of	mod_proxy,	without	handling	of	persistent	connections.	This	means	the	performance	of	your
proxy	will	be	better	if	you	set	it	up	with	 	ProxyPass		or	 	ProxyPassMatch	.

This	is	because	this	flag	triggers	the	use	of	the	default	worker,	which	does	not	handle	connection	pooling.	Avoid	using	this	flag
and	prefer	those	directives,	whenever	you	can.

Note:	mod_proxy	must	be	enabled	in	order	to	use	this	flag.

See	Chapter	ref{chapter_proxy}	for	a	more	thorough	treatment	of	proxying.

PT	-	passthrough

The	target	(or	substitution	string)	in	a	 	RewriteRule		is	assumed	to	be	a	file	path,	by	default.	The	use	of	the	 	[PT]		flag	causes	it
to	be	treated	as	a	URI	instead.	That	is	to	say,	the	use	of	the	 	[PT]		flag	causes	the	result	of	the	 	RewriteRule		to	be	passed	back
through	URL	mapping,	so	that	location-based	mappings,	such	as	 	Alias	,	 	Redirect	,	or	 	ScriptAlias	,	for	example,	might	have
a	chance	to	take	effect.

If,	for	example,	you	have	an	 	Alias		for	 	/icons	,	and	have	a	 	RewriteRule		pointing	there,	you	should	use	the	 	[PT]		flag	to
ensure	that	the	 	Alias		is	evaluated.

Alias	/icons	/usr/local/apache/icons

RewriteRule	/pics/(.+)\.jpg$	/icons/$1.gif	[PT]

Omission	of	the	 	[PT]		flag	in	this	case	will	cause	the	 	Alias		to	be	ignored,	resulting	in	a	'File	not	found'	error	being	returned.

The	 	[PT]		flag	implies	the	 	[L]		flag:	rewriting	will	be	stopped	in	order	to	pass	the	request	to	the	next	phase	of	processing.

Note	that	the	 	[PT]		flag	is	implied	in	per-directory	contexts	such	as	 	<Directory>		sections	or	in	.htaccess	files.	The	only	way	to
circumvent	that	is	to	rewrite	to	-.

QSA	-	qsappend

When	the	replacement	URI	contains	a	query	string,	the	default	behavior	of	RewriteRule	is	to	discard	the	existing	query	string,	and
replace	it	with	the	newly	generated	one.	Using	the	 	[QSA]		flag	causes	the	query	strings	to	be	combined.

Consider	the	following	rule:

RewriteRule	/pages/(.+)	/page.php?page=$1	[QSA]

With	the	 	[QSA]		flag,	a	request	for	 	/pages/123?one=two		will	be	mapped	to	 	/page.php?page=123&one=two	.	Without	the
	[QSA]		flag,	that	same	request	will	be	mapped	to	 	/page.php?page=123		-	that	is,	the	existing	query	string	will	be	discarded.

QSD	-	qsdiscard

RewriteRule	flags

36

http://hostname>


When	the	requested	URI	contains	a	query	string,	and	the	target	URI	does	not,	the	default	behavior	of	 	RewriteRule		is	to	copy
that	query	string	to	the	target	URI.	Using	the	 	[QSD]		flag	causes	the	query	string	to	be	discarded.

This	flag	is	available	in	version	2.4.0	and	later.

Using	 	[QSD]		and	 	[QSA]		together	will	result	in	 	[QSD]		taking	precedence.

If	the	target	URI	has	a	query	string,	the	default	behavior	will	be	observed	-	that	is,	the	original	query	string	will	be	discarded	and
replaced	with	the	query	string	in	the	 	RewriteRule		target	URI.

R	-	redirect

Use	of	the	 	[R]		flag	causes	a	HTTP	redirect	to	be	issued	to	the	browser.	If	a	fully-qualified	URL	is	specified	(that	is,	including
<http://servername/>)	then	a	redirect	will	be	issued	to	that	location.	Otherwise,	the	current	protocol,	servername,	and	port	number
will	be	used	to	generate	the	URL	sent	with	the	redirect.

Any	valid	HTTP	response	status	code	may	be	specified,	using	the	syntax	 	[R=305]	,	with	a	302	status	code	being	used	by	default
if	none	is	specified.	The	status	code	specified	need	not	necessarily	be	a	redirect	(3xx)	status	code.	However,	if	a	status	code	is
outside	the	redirect	range	(300-399)	then	the	substitution	string	is	dropped	entirely,	and	rewriting	is	stopped	as	if	the	L	were	used.

In	addition	to	response	status	codes,	you	may	also	specify	redirect	status	using	their	symbolic	names:	temp	(default),	permanent,
or	seeother.

You	will	almost	always	want	to	use	 	[R]		in	conjunction	with	 	[L]		(that	is,	use	 	[R,L]	)	because	on	its	own,	the	 	[R]		flag
prepends	http://thishost%5B:thisport%5D	to	the	URI,	but	then	passes	this	on	to	the	next	rule	in	the	ruleset,	which	can	often	result
in	'Invalid	URI	in	request'	warnings.

S	-	skip

The	 	[S]		flag	is	used	to	skip	rules	that	you	don’t	want	to	run.	The	syntax	of	the	skip	flag	is	 	[S=N]	,	where	N	signifies	the
number	of	rules	to	skip	(provided	the	RewriteRule	and	any	preceding	RewriteCond	directives	match).	This	can	be	thought	of	as	a
goto	statement	in	your	rewrite	ruleset.	In	the	following	example,	we	only	want	to	run	the	RewriteRule	if	the	requested	URI
doesn’t	correspond	with	an	actual	file.

#	Is	the	request	for	a	non-existent	file?

RewriteCond	%{REQUEST_FILENAME}	!-f

RewriteCond	%{REQUEST_FILENAME}	!-d

#	If	so,	skip	these	two	RewriteRules

RewriteRule	.?	-	[S=2]

RewriteRule	(.*\.gif)	images.php?$1

RewriteRule	(.*\.html)	docs.php?$1

This	technique	is	useful	because	a	 	RewriteCond		only	applies	to	the	 	RewriteRule		immediately	following	it.	Thus,	if	you	want	to
make	a	 	RewriteCond		apply	to	several	 	RewriteRule`s,	one	possible	technique	is	to	negate	those	conditions	and	add	a
`RewriteRule		with	a	 	[Skip]		flag.	You	can	use	this	to	make	pseudo	if-then-else	constructs:	The	last	rule	of	the	then-clause
becomes	skip=N,	where	N	is	the	number	of	rules	in	the	else-clause:

#	Does	the	file	exist?

RewriteCond	%{REQUEST_FILENAME}	!-f

RewriteCond	%{REQUEST_FILENAME}	!-d

#	Create	an	if-then-else	construct	by	skipping	3	lines	if	we	meant	to	go	to	the	

RewriteRule	flags

37

http://servername/>
http://thishost%5B:thisport%5D


"else"	stanza.

RewriteRule	.?	-	[S=3]

#	IF	the	file	exists,	then:

				RewriteRule	(.*\.gif)	images.php?$1

				RewriteRule	(.*\.html)	docs.php?$1

				#	Skip	past	the	"else"	stanza.

				RewriteRule	.?	-	[S=1]

#	ELSE...

				RewriteRule	(.*)	404.php?file=$1

#	END

It	is	probably	easier	to	accomplish	this	kind	of	configuration	using	the	 	<If>	,	 	<ElseIf>	,	and	 	<Else>		directives	instead.	(2.4
and	later	-	See	ref{if}.)

T	-	type

Sets	the	MIME	type	with	which	the	resulting	response	will	be	sent.	This	has	the	same	effect	as	the	 	AddType		directive.

For	example,	you	might	use	the	following	technique	to	serve	Perl	source	code	as	plain	text,	if	requested	in	a	particular	way:

#	Serve	.pl	files	as	plain	text

RewriteRule	\.pl$	-	[T=text/plain]

Or,	perhaps,	if	you	have	a	camera	that	produces	jpeg	images	without	file	extensions,	you	could	force	those	images	to	be	served
with	the	correct	MIME	type	by	virtue	of	their	file	names:

#	Files	with	'IMG'	in	the	name	are	jpg	images.

RewriteRule	IMG	-	[T=image/jpg]

Please	note	that	this	is	a	trivial	example,	and	could	be	better	done	using	 	<FilesMatch>		instead.	Always	consider	the	alternate
solutions	to	a	problem	before	resorting	to	rewrite,	which	will	invariably	be	a	less	efficient	solution	than	the	alternatives.

If	used	in	per-directory	context,	use	only	-	(dash)	as	the	substitution	for	the	entire	round	of	mod_rewrite	processing,	otherwise	the
MIME-type	set	with	this	flag	is	lost	due	to	an	internal	re-processing	(including	subsequent	rounds	of	mod_rewrite	processing).
The	L	flag	can	be	useful	in	this	context	to	end	the	current	round	of	mod_rewrite	processing.

RewriteRule	flags

38



Table	of	Contents
Chapter	7:	RewriteCond

Chapter	7:	RewriteCond

The	 	RewriteCond		directive	attaches	additional	conditions	on	a	 	RewriteRule	,	and	may	also	set	backreferences	that	may	be	used
in	the	rewrite	target.

One	or	more	 	RewriteCond		directives	may	precede	a	 	RewriteRule		directive.	That	 	RewriteRule		is	then	applied	only	if	the
current	state	of	the	URI	matches	its	pattern,	and	all	of	these	conditions	are	met.

The	 	RewriteCond		directive	has	the	following	syntax:

RewriteCond	TestString		CondPattern	[Flag]

The	arguments	have	the	following	meaning:

TestString
Any	string	or	variable	to	be	tested	for	a	match.

CondPattern
A	regular	expression	or	other	other	expression	to	be	compared	against	the	TestString.

Flag
One	or	more	flags	which	modify	the	behavior	of	the	condition.

These	definitions	will	be	expanded	in	the	sections	below.

TestString

TestString	is	a	string	which	can	contain	the	following	expanded	constructs	in	addition	to	plain	text:

RewriteRule	backreferences
These	are	backreferences	of	the	form	$N	(0	⇐	N	⇐	9).	$1	to	$9	provide	access	to	the	grouped	parts	(in	parentheses)	of	the
pattern,	from	the	RewriteRule	which	is	subject	to	the	current	set	of	RewriteCond	conditions.	$0	provides	access	to	the	whole
string	matched	by	that	pattern.

RewriteCond	backreferences
These	are	backreferences	of	the	form	%N	(0	⇐	N	⇐	9).	%1	to	%9	provide	access	to	the	grouped	parts	(again,	in	parentheses)
of	the	pattern,	from	the	last	matched	RewriteCond	in	the	current	set	of	conditions.	%0	provides	access	to	the	whole	string
matched	by	that	pattern.

RewriteMap	expansions
These	are	expansions	of	the	form	$\{mapname:key|default}.	See	the	documentation	for	RewriteMap	for	more	details.

Server-Variables
These	are	variables	of	the	form	%\{	NAME_OF_VARIABLE	}	where	NAME_OF_VARIABLE	can	be	a	string	taken	from
the	following	list:

HTTP	headers:

HTTP_USER_AGENT	HTTP_REFERER	HTTP_COOKIE	HTTP_FORWARDED	HTTP_HOST
HTTP_PROXY_CONNECTION	HTTP_ACCEPT

connection	&	request:

REMOTE_ADDR	REMOTE_HOST	REMOTE_PORT	REMOTE_USER	REMOTE_IDENT	REQUEST_METHOD
SCRIPT_FILENAME	PATH_INFO	QUERY_STRING	AUTH_TYPE

RewriteCond

39



server	internals:

DOCUMENT_ROOT	SERVER_ADMIN	SERVER_NAME	SERVER_ADDR	SERVER_PORT	SERVER_PROTOCOL
SERVER_SOFTWARE

date	and	time:

TIME_YEAR	TIME_MON	TIME_DAY	TIME_HOUR	TIME_MIN	TIME_SEC	TIME_WDAY	TIME

specials:

API_VERSION	THE_REQUEST	REQUEST_URI	REQUEST_FILENAME	IS_SUBREQ	HTTPS	REQUEST_SCHEME

These	variables	all	correspond	to	the	similarly	named	HTTP	MIME-headers,	C	variables	of	the	Apache	HTTP	Server	or	struct	tm
fields	of	the	Unix	system.	Most	are	documented	elsewhere	in	the	Manual	or	in	the	CGI	specification.

SERVER_NAME	and	SERVER_PORT	depend	on	the	values	of	UseCanonicalName	and	UseCanonicalPhysicalPort	respectively.

Those	that	are	special	to	mod_rewrite	include	those	below.

IS_SUBREQ
Will	contain	the	text	"true"	if	the	request	currently	being	processed	is	a	sub-request,	"false"	otherwise.	Sub-requests	may	be
generated	by	modules	that	need	to	resolve	additional	files	or	URIs	in	order	to	complete	their	tasks.

API_VERSION
This	is	the	version	of	the	Apache	httpd	module	API	(the	internal	interface	between	server	and	module)	in	the	current	httpd
build,	as	defined	in	include/ap_mmn.h.	The	module	API	version	corresponds	to	the	version	of	Apache	httpd	in	use	(in	the
release	version	of	Apache	httpd	1.3.14,	for	instance,	it	is	19990320:10),	but	is	mainly	of	interest	to	module	authors.

THE_REQUEST
The	full	HTTP	request	line	sent	by	the	browser	to	the	server	(e.g.,	"GET	/index.html	HTTP/1.1").	This	does	not	include	any
additional	headers	sent	by	the	browser.	This	value	has	not	been	unescaped	(decoded),	unlike	most	other	variables	below.

REQUEST_URI
The	path	component	of	the	requested	URI,	such	as	"/index.html".	This	notably	excludes	the	query	string	which	is	available	as
as	its	own	variable	named	QUERY_STRING.

REQUEST_FILENAME
The	full	local	filesystem	path	to	the	file	or	script	matching	the	request,	if	this	has	already	been	determined	by	the	server	at	the
time	REQUEST_FILENAME	is	referenced.	Otherwise,	such	as	when	used	in	virtual	host	context,	the	same	value	as
REQUEST_URI.	Depending	on	the	value	of	AcceptPathInfo,	the	server	may	have	only	used	some	leading	components	of	the
REQUEST_URI	to	map	the	request	to	a	file.

HTTPS
Will	contain	the	text	"on"	if	the	connection	is	using	SSL/TLS,	or	"off"	otherwise.	(This	variable	can	be	safely	used	regardless
of	whether	or	not	mod_ssl	is	loaded).

REQUEST_SCHEME
Will	contain	the	scheme	of	the	request	(usually	"http"	or	"https").	This	value	can	be	influenced	with	ServerName.

If	the	TestString	has	the	special	value	expr,	the	CondPattern	will	be	treated	as	an	ap_expr.	HTTP	headers	referenced	in	the
expression	will	be	added	to	the	Vary	header	if	the	novary	flag	is	not	given.

Other	things	you	should	be	aware	of:

The	variables	SCRIPT_FILENAME	and	REQUEST_FILENAME	contain	the	same	value	-	the	value	of	the	filename	field	of	the
internal	request_rec	structure	of	the	Apache	HTTP	Server.	The	first	name	is	the	commonly	known	CGI	variable	name	while	the
second	is	the	appropriate	counterpart	of	REQUEST_URI	(which	contains	the	value	of	the	uri	field	of	request_rec).

If	a	substitution	occurred	and	the	rewriting	continues,	the	value	of	both	variables	will	be	updated	accordingly.

RewriteCond

40



If	used	in	per-server	context	(i.e.,	before	the	request	is	mapped	to	the	filesystem)	SCRIPT_FILENAME	and
REQUEST_FILENAME	cannot	contain	the	full	local	filesystem	path	since	the	path	is	unknown	at	this	stage	of	processing.	Both
variables	will	initially	contain	the	value	of	REQUEST_URI	in	that	case.	In	order	to	obtain	the	full	local	filesystem	path	of	the
request	in	per-server	context,	use	an	URL-based	look-ahead	 	%{LA-U:REQUEST_FILENAME}		to	determine	the	final	value	of
REQUEST_FILENAME.

	%{ENV:variable}	,	where	variable	can	be	any	environment	variable,	is	also	available.	This	is	looked-up	via	internal	Apache	httpd
structures	and	(if	not	found	there)	via	getenv()	from	the	Apache	httpd	server	process.

	%{SSL:variable}	,	where	variable	is	the	name	of	an	SSL	environment	variable,	can	be	used	whether	or	not	mod_ssl	is	loaded,
but	will	always	expand	to	the	empty	string	if	it	is	not.	Example:	 	%{SSL:SSL_CIPHER_USEKEYSIZE}		may	expand	to	128.

	%{HTTP:header}	,	where	header	can	be	any	HTTP	MIME-header	name,	can	always	be	used	to	obtain	the	value	of	a	header	sent	in
the	HTTP	request.	Example:	 	%{HTTP:Proxy-Connection}		is	the	value	of	the	HTTP	header	Proxy-Connection:.

If	a	HTTP	header	is	used	in	a	condition	this	header	is	added	to	the	Vary	header	of	the	response	in	case	the	condition	evaluates	to
to	true	for	the	request.	It	is	not	added	if	the	condition	evaluates	to	false	for	the	request.	Adding	the	HTTP	header	to	the	Vary
header	of	the	response	is	needed	for	proper	caching.

It	has	to	be	kept	in	mind	that	conditions	follow	a	short	circuit	logic	in	the	case	of	the	'ornext|OR'	flag	so	that	certain	conditions
might	not	be	evaluated	at	all.

	%{LA-U:variable}		can	be	used	for	look-aheads	which	perform	an	internal	(URL-based)	sub-request	to	determine	the	final	value
of	variable.	This	can	be	used	to	access	variable	for	rewriting	which	is	not	available	at	the	current	stage,	but	will	be	set	in	a	later
phase.

For	instance,	to	rewrite	according	to	the	REMOTE_USER	variable	from	within	the	per-server	context	(httpd.conf	file)	you	must
use	 	%{LA-U:REMOTE_USER}		-	this	variable	is	set	by	the	authorization	phases,	which	come	after	the	URL	translation	phase	(during
which	mod_rewrite	operates).

On	the	other	hand,	because	mod_rewrite	implements	its	per-directory	context	(.htaccess	file)	via	the	Fixup	phase	of	the	API	and
because	the	authorization	phases	come	before	this	phase,	you	just	can	use	 	%{REMOTE_USER}		in	that	context.

	%{LA-F:variable}		can	be	used	to	perform	an	internal	(filename-based)	sub-request,	to	determine	the	final	value	of	variable.
Most	of	the	time,	this	is	the	same	as	LA-U	above.

CondPattern

CondPattern	is	the	condition	pattern,	a	regular	expression	which	is	applied	to	the	current	instance	of	the	TestString.	TestString	is
first	evaluated,	before	being	matched	against	CondPattern.

CondPattern	is	usually	a	perl	compatible	regular	expression,	but	there	is	additional	syntax	available	to	perform	other	useful	tests
against	the	Teststring:

You	can	prefix	the	pattern	string	with	a	'!'	character	(exclamation	mark)	to	specify	a	non-matching	pattern.

You	can	perform	lexicographical	string	comparisons:

'<CondPattern'	(lexicographically	precedes)
Treats	the	CondPattern	as	a	plain	string	and	compares	it	lexicographically	to	TestString.	True	if	TestString	lexicographically
precedes	CondPattern.

'>CondPattern'	(lexicographically	follows)
Treats	the	CondPattern	as	a	plain	string	and	compares	it	lexicographically	to	TestString.	True	if	TestString	lexicographically
follows	CondPattern.

'=CondPattern'	(lexicographically	equal)

RewriteCond

41



Treats	the	CondPattern	as	a	plain	string	and	compares	it	lexicographically	to	TestString.	True	if	TestString	is
lexicographically	equal	to	CondPattern	(the	two	strings	are	exactly	equal,	character	for	character).	If	CondPattern	is	""	(two
quotation	marks)	this	compares	TestString	to	the	empty	string.

'⇐CondPattern'	(lexicographically	less	than	or	equal	to)
Treats	the	CondPattern	as	a	plain	string	and	compares	it	lexicographically	to	TestString.	True	if	TestString	lexicographically
precedes	CondPattern,	or	is	equal	to	CondPattern	(the	two	strings	are	equal,	character	for	character).

'>=CondPattern'	(lexicographically	greater	than	or	equal	to)
Treats	the	CondPattern	as	a	plain	string	and	compares	it	lexicographically	to	TestString.	True	if	TestString	lexicographically
follows	CondPattern,	or	is	equal	to	CondPattern	(the	two	strings	are	equal,	character	for	character).

You	can	perform	integer	comparisons:

'-eq'	(is	numerically	equal	to)
The	TestString	is	treated	as	an	integer,	and	is	numerically	compared	to	the	CondPattern.	True	if	the	two	are	numerically	equal.

'-ge'	(is	numerically	greater	than	or	equal	to)
The	TestString	is	treated	as	an	integer,	and	is	numerically	compared	to	the	CondPattern.	True	if	the	TestString	is	numerically
greater	than	or	equal	to	the	CondPattern.

'-gt'	(is	numerically	greater	than)
The	TestString	is	treated	as	an	integer,	and	is	numerically	compared	to	the	CondPattern.	True	if	the	TestString	is	numerically
greater	than	the	CondPattern.

'-le'	(is	numerically	less	than	or	equal	to)
The	TestString	is	treated	as	an	integer,	and	is	numerically	compared	to	the	CondPattern.	True	if	the	TestString	is	numerically
less	than	or	equal	to	the	CondPattern.	Avoid	confusion	with	the	-l	by	using	the	-L	or	-h	variant.

'-lt'	(is	numerically	less	than)
The	TestString	is	treated	as	an	integer,	and	is	numerically	compared	to	the	CondPattern.	True	if	the	TestString	is	numerically
less	than	the	CondPattern.	Avoid	confusion	with	the	-l	by	using	the	-L	or	-h	variant.

You	can	perform	various	file	attribute	tests:

'-d'	(is	directory)
Treats	the	TestString	as	a	pathname	and	tests	whether	or	not	it	exists,	and	is	a	directory.

'-f'	(is	regular	file)
Treats	the	TestString	as	a	pathname	and	tests	whether	or	not	it	exists,	and	is	a	regular	file.

'-F'	(is	existing	file,	via	subrequest)
Checks	whether	or	not	TestString	is	a	valid	file,	accessible	via	all	the	server’s	currently-configured	access	controls	for	that
path.	This	uses	an	internal	subrequest	to	do	the	check,	so	use	it	with	care	-	it	can	impact	your	server’s	performance!

'-H'	(is	symbolic	link,	bash	convention)
See	-l.

'-l'	(is	symbolic	link)
Treats	the	TestString	as	a	pathname	and	tests	whether	or	not	it	exists,	and	is	a	symbolic	link.	May	also	use	the	bash
convention	of	-L	or	-h	if	there’s	a	possibility	of	confusion	such	as	when	using	the	-lt	or	-le	tests.

'-L'	(is	symbolic	link,	bash	convention)
See	-l.

'-s'	(is	regular	file,	with	size)
Treats	the	TestString	as	a	pathname	and	tests	whether	or	not	it	exists,	and	is	a	regular	file	with	size	greater	than	zero.

'-U'	(is	existing	URL,	via	subrequest)

RewriteCond

42



Checks	whether	or	not	TestString	is	a	valid	URL,	accessible	via	all	the	server’s	currently-configured	access	controls	for	that
path.	This	uses	an	internal	subrequest	to	do	the	check,	so	use	it	with	care	-	it	can	impact	your	server’s	performance!

'-x'	(has	executable	permissions)
Treats	the	TestString	as	a	pathname	and	tests	whether	or	not	it	exists,	and	has	executable	permissions.	These	permissions	are
determined	according	to	the	underlying	OS.

Note:

All	of	these	tests	can	also	be	prefixed	by	an	exclamation	mark	('!')	to	negate	their	meaning.

If	the	TestString	has	the	special	value	expr,	the	CondPattern	will	be	treated	as	an	ap_expr.

In	the	below	example,	-strmatch	is	used	to	compare	the	REFERER	against	the	site	hostname,	to	block	unwanted	hotlinking.

RewriteCond	expr	"!	%{HTTP_REFERER}	-strmatch	'*://%{HTTP_HOST}/*'"

RewriteRule	^/images	-	[F]

Flag

You	can	also	set	special	flags	for	CondPattern	by	appending	[flags]	as	the	third	argument	to	the	RewriteCond	directive,	where
flags	is	a	comma-separated	list	of	any	of	the	following	flags:

'nocase|NC'	(no	case)
This	makes	the	test	case-insensitive	-	differences	between	'A-Z'	and	'a-z'	are	ignored,	both	in	the	expanded	TestString	and	the
CondPattern.	This	flag	is	effective	only	for	comparisons	between	TestString	and	CondPattern.	It	has	no	effect	on	filesystem
and	subrequest	checks.

'ornext|OR'	(or	next	condition)
Use	this	to	combine	rule	conditions	with	a	local	OR	instead	of	the	implicit	AND.	Typical	example:

RewriteCond	%{REMOTE_HOST}		^host1		[OR]

RewriteCond	%{REMOTE_HOST}		^host2		[OR]

RewriteCond	%{REMOTE_HOST}		^host3

RewriteRule	...some	special	stuff	for	any	of	these	hosts...

Without	this	flag	you	would	have	to	write	the	condition/rule	pair	three	times.

'novary|NV'	(no	vary)
If	a	HTTP	header	is	used	in	the	condition,	this	flag	prevents	this	header	from	being	added	to	the	Vary	header	of	the	response.

Using	this	flag	might	break	proper	caching	of	the	response	if	the	representation	of	this	response	varies	on	the	value	of	this	header.
So	this	flag	should	be	only	used	if	the	meaning	of	the	Vary	header	is	well	understood.

Examples

Query	Strings	..	index
rewritemap_int	'''''''''''''

RewriteCond

43



Table	of	Contents
Chapter	8:	RewriteMap

Creating	a	RewriteMap
Using	a	RewriteMap
RewriteMap	Types

int
toupper
tolower
escape
unescape

txt
rnd
dbm
prg
dbd

Chapter	8:	RewriteMap

The	 	RewriteMap		directive	gives	you	a	way	to	call	external	mapping	routines	to	simplify	a	 	RewriteRule	.	This	external	mapping
can	be	a	flat	text	file	containing	one-to-one	mappings,	or	a	database,	or	a	script	that	produces	mapping	rules,	or	a	variety	of	other
similar	things.	In	this	chapter	we’ll	discuss	how	to	use	a	 	RewriteMap		in	a	 	RewriteRule		or	 	RewriteCond	.

Creating	a	RewriteMap

The	 	RewriteMap		directive	creates	an	alias	which	you	can	then	invoke	in	either	a	 	RewriteRule		or	 	RewriteCond		directive.	You
can	think	of	it	as	defining	a	function	that	you	can	call	later	on.

The	syntax	of	the	 	RewriteMap		directive	is	as	follows:

RewriteMap	MapName	MapType:MapSource

Where	the	various	parts	of	that	syntax	are	defined	as:

MapName
The	name	of	the	'function'	that	you’re	creating

MapType
The	type	of	the	map.	The	various	available	map	types	are	discussed	below.

MapSource
The	location	from	which	the	map	definition	will	be	obtained,	such	as	a	file,	database	query,	or	predefined	function.

The	 	RewriteMap		directive	must	be	used	either	in	virtualhost	context,	or	in	global	server	context.	This	is	because	a	 	RewriteMap	
is	loaded	at	server	startup	time,	rather	than	at	request	time,	and,	as	such,	cannot	be	specified	in	a	 	.htaccess		file.

Using	a	RewriteMap

Once	you	have	defined	a	 	RewriteMap	,	you	can	then	use	it	in	a	 	RewriteRule		or	 	RewriteCond		as	follows:

RewriteMap	examplemap	txt:/path/to/file/map.txt

RewriteRule	^/ex/(.*)	${examplemap:$1}

RewriteMap

44



Note	in	this	example	that	the	 	RewriteMap	,	named	'examplemap',	is	passed	an	argument,	 	$1	,	which	is	captured	by	the
	RewriteRule		pattern.	It	can	also	be	passed	an	argument	of	another	known	variable.	For	example,	if	you	wanted	to	invoke	the
	examplemap		map	on	the	entire	requested	URI,	you	could	use	the	variable	 	%{REQUEST_URI}		rather	than	 	$1		in	your	invocation:

RewriteRule	^	${examplemap:%{REQUEST_URI}}

RewriteMap	Types

There	are	a	number	of	different	map	types	which	may	be	used	in	a	 	RewriteMap	.

int

An	 	int		map	type	is	an	internal	function,	pre-defined	by	 	mod_rewrite		itself.	There	are	four	such	functions:

toupper

The	 	toupper		internal	function	converts	the	provided	argument	text	to	all	upper	case	characters.

#	Convert	any	lower-case	request	to	upper	case	and	redirect

RewriteMap	uc	int:toupper

RewriteRule	(.*?[a-z]+.*)	${uc:$1}	[R=301]

tolower

The	 	tolower		is	the	opposite	of	 	toupper	,	converting	any	argument	text	to	lower	case	characters.

#	Convert	any	upper-case	request	to	lower	case	and	redirect

RewriteMap	lc	int:tolower

RewriteRule	(.*?[A-Z]+.*)	${lc:$1}	[R=301]

escape

unescape

txt

A	 	txt		map	defines	a	one-to-one	mapping	from	argument	to	target.

rnd

A	 	rnd		map	will	randomly	select	one	value	from	the	specified	text	file.

dbm

prg

dbd

RewriteMap

45



Table	of	Contents
Chapter	9:	Proxies	and	mod_rewrite

Chapter	9:	Proxies	and	mod_rewrite

Proxying	with	mod_rewrite

46



Table	of	Contents
Chapter	10:	Virtual	hosts	and	mod_rewrite

Chapter	10:	Virtual	hosts	and	mod_rewrite

Virtual	Hosts	with	mod_rewrite

47



Table	of	Contents
Chapter	11:	Access	control	with	mod_rewrite

Chapter	11:	Access	control	with	mod_rewrite

Access	Control	with	mod_rewrite

48



Table	of	Contents
Chapter	12:	Conditional	Configuration

Introduction
Match	Directives
IfDefine
Define
<If>,	<Elsif>,	and	<Else>

Canonical	hostname
Image	hotlinking

mod_macro
mod_proxy_express
mod_vhost_alias

Conditional	logging
env=
Per-module	logging
Per-directory	logging
Piped	logging

Chapter	12:	Conditional	Configuration

Introduction

While	the	Apache	httpd	configuration	files	have	always	had	some	ways	to	make	things	conditional,	with	the	advent	of	version	2.4,
there’s	an	explosion	in	the	ways	that	you	can	make	your	configuration	file	reactive	and	programmable.	That	is,	you	can	make	your
configuration	more	responsive	to	the	specifics	of	the	request	that	it	servicing.

In	this	part	of	the	book,	we	discuss	some	of	this	functionality.	Some	of	it	is	specific	to	version	2.4	and	later,	while	some	of	it	has
been	available	for	years.

Match	Directives

FilesMatch,	RedirectMatch,	etc.

IfDefine

The	 	IfDefine		directive	provides	a	way	to	make	blocks	of	your	configuration	file	optional,	depending	on	the	presence,	or
absence,	of	an	appropriate	command-line	switch.	Specifically,	a	configuration	block	wrapped	in	an	 	<IfDefine	XYZ>		container
will	be	invoked	if	and	only	if	the	server	is	started	up	with	a	 	-D	XYZ		command	line	switch.

Consider,	for	example	a	configuration	as	follows:

<IfDefine	TEST>

				ServerName	test.example.com

</IfDefine>

<IfDefine	!TEST>

				ServerName	www.example.com

</IfDefine>

Now,	you	can	start	the	server	with	a	 	-D	TEST		command	line	option:

httpd	-D	TEST	-k	restart

If,	and	other	Configuration	Configuration

49



This	will	result	in	the	first	of	the	two	 	IfDefine		blocks	being	loaded.	Conversely,	if	you	omit	the	 	-D	TEST		flag,	the	server	will
start	with	the	second	of	the	two	 	IfDefine		blocks	loaded.

This	gives	the	ability	to	keep	several	configurations	in	the	same	file,	and	load	various	components	on	demand.	You	could	even
deploy	the	same	configuration	file	to	several	different	servers,	but	start	each	with	different	command	line	flags	(you	can	specify
more	than	one	 	-D		flag	at	startup)	to	start	the	servers	up	in	different	configurations.

	<IfDefine>		blocks	can	be	nested,	so	that	you	can	combine	several	conditions,	as	seen	in	this	example	from	the	docs:

<IfDefine	ReverseProxy>

				LoadModule	proxy_module			modules/mod_proxy.so

				LoadModule	proxy_http_module	modules/mod_proxy_http.so

				<IfDefine	UseCache>

								LoadModule	cache_module	modules/mod_cache.so

								<IfDefine	MemCache>

												LoadModule	mem_cache_module	modules/mod_mem_cache.so

								</IfDefine>

								<IfDefine	!MemCache>

												LoadModule	cache_disk_module	modules/mod_cache_disk.so

								</IfDefine>

				</IfDefine>

</IfDefine>

You	could	then,	for	example,	start	the	server	up	with:

httpd	-DReverseProxy	-DUseCache	-DMemCache	-k	restart

(The	space	between	 	-D		and	the	flag	is	optional.)

Define

New	with	the	2.3	(and	later)	version	of	the	server	is	the	 	Define		directive,	which	lets	you	define	variables	within	the
configuration	file,	which	can	then	be	used	later	on	in	the	configuration,	either	as	part	of	a	configuration	directive,	or	in	an
	<IfDefine	…>		directive.

Consider	this	variation	on	the	earlier	example:

<IfDefine	TEST>

				Define	servername	test.example.com

</IfDefine>

<IfDefine	!TEST>

				Define	servername	www.example.com

				Define	SSL

</IfDefine>

DocumentRoot	/var/www/${servername}/htdocs

A	variable	 	VAR		defined	with	the	 	Define		directive	can	then	be	used	later	using	the	 	${VAR}		syntax,	as	shown	here.	In	the	case
where	no	value	is	given	(see	the	line	 	Define	SSL	)	the	variable	is	set	to	 	TRUE	,	which	can	then	be	tested	later	using	an
	<IfDefine>		test.

If,	and	other	Configuration	Configuration

50



In	this	example,	as	before,	the	server	should	be	started	with	a	 	-DTEST		command	line	option	to	use	the	first	definition	of
	servername		and	without	it	to	use	the	second.

Or	you	can	use	a	 	Define		directive	to	define	something,	such	as	a	file	path,	which	is	then	used	several	times	in	the	configuration:

Define	docroot	/var/www/vhosts/www.example.com

DocumentRoot	${docroot}

<Directory	${docroot}>

				Require	all	granted

</Directory>

<If>,	<Elsif>,	and	<Else>

New	in	Apache	httpd	2.4	is	the	ability	to	put	 	<If>		blocks	in	your	configuration	file	to	make	it	truly	conditional.	This	provides	a
level	of	flexibility	that	was	never	before	available.

Whereas	the	 	<IfDefine>		and	 	<Define>		directives	are	evaluated	at	server	startup	time,	 	<If>		is	evaluated	at	request	time,
giving	you	the	chance	to	make	configuration	dependant	on	values	that	may	change	from	one	HTTP	request	to	another.	Naturally,
this	results	in	some	request-time	overhead,	but	the	flexibility	that	you	gain	may	be	worth	this	to	you	in	some	situations.

Consider	the	following	examples	to	give	you	some	ideas:

Canonical	hostname

In	many	situations,	it	is	desirable	to	enforce	a	particular	hostname	on	your	website.	For	example,	if	you	are	setting	cookies,	you
need	to	ensure	that	those	cookies	are	valid	for	all	requests	to	your	site,	which	requires	that	the	hostname	being	accessed	match	the
hostname	on	the	cookie	itself.	So,	when	someone	accesses	your	site	using	the	hostname	 	example.com	,	you	want	to	redirect	that
request	to	use	the	hostname	 	www.example.com	.

In	previous	versions	of	httpd,	you	may	have	used	 	mod_rewrite		to	perform	this	redirection,	but	 	<If>		provides	a	more	intuitive
syntax:

#	Compare	the	host	name	to	example.com	and

#	redirect	to	www.example.com	if	it	matches

<If	"%{HTTP_HOST}	==	'example.com'">

				Redirect	permanent	/	http://www.example.com/

</If>

Image	hotlinking

You	may	wish	to	prevent	another	website	from	embedding	your	images	in	their	pages	-	so-called	image	hotlinking.	This	is	usually
done	by	comparing	the	HTTP_REFERER	variable	on	a	request	to	these	images	to	ensure	that	the	request	originated	within	a	page
on	your	site:

#	Images	...

<FilesMatch	"\.(gif|jpe?g|png)$">

				#	Check	to	see	that	the	referer	is	right

				<If	"%{HTTP_REFERER}	!~	/example.com/"	>

								Require	all	denied

				</If>

If,	and	other	Configuration	Configuration

51



</FilesMatch>

mod_macro

	mod_macro		has	been	around	for	a	while,	but	with	the	2.4	version	of	the	server	it	is	now	one	of	the	modules	that	comes	with	the
server	itself,	rather	than	being	a	third-party	module	obtained	and	installed	separately.

It	provides	the	ability	-	as	the	name	suggests	-	to	create	macros	within	your	configuration	file,	which	can	then	be	invoked	multiple
times,	in	order	to	produce	several	similar	configuration	blocks.	Parameters	can	be	provided	to	fill	in	the	variables	in	those	macros.

Macros	are	evaluated	at	server	startup	time,	and	the	resulting	configuration	is	then	loaded	as	though	it	was	a	static	configuration
file	on	disk.

mod_proxy_express

mod_vhost_alias

Conditional	logging

env=

Per-module	logging

Per-directory	logging

Piped	logging

If,	and	other	Configuration	Configuration

52



Table	of	Contents
Chapter	13:	Content	Munging

mod_substitute
mod_sed
mod_proxy_html
Filters

Chapter	13:	Content	Munging

While	mod_rewrite	modifies	aspects	of	the	HTTP	request	-	most	commonly	the	REQUEST_URI,	sometimes	you	want	to	modify
the	content	which	is	served	to	the	client.	There	are	several	modules	that	do	this,	which	can	be	used	in	a	variety	of	circumstances.

We’re	going	to	look	at	three	of	these	modules,	and	then	at	Filters	in	general.

mod_substitute

mod_sed

mod_proxy_html

Filters

Content	Munging	Modules

53



Table	of	Contents
Chapter	14:	Recipes

Chapter	14:	Recipes

In	this	chapter,	we’ll	present	various	common	problems,	and	a	variety	of	ways	to	solve	them	using	 	mod_rewrite	,	or	one	of	the
other	tools	discussed	in	this	book.

Some	of	these	recipes	have	already	been	presented	in	other	parts	of	the	book,	but	are	gathered	here	to	make	it	easier	to	find	them.
We’ll	also	expand,	in	detail,	how	they	work,	and	when	you	might	want	to	use	one	solution	versus	another.

Recipes

54



TODO

This	book	is	a	work	in	progress,	and	I	expect	it	to	remain	such	for	years	to	come.	This	is	the	place	to	check	to	see	if	you've
purchased	the	latest	version,	and	what	changed	from	one	version	to	another.

While	the	version	number	starts	with	0.something,	you	can	expect	that	there's	quite	a	bit	of	work	yet	to	do.	Once	it	is	1.something,
you	can	expect	that	changes	will	be	fairly	minor.	I	think.	We'll	see.

TODO

Standardize	how	we	display	example
Write	mod_rewrite	chapter(s)
Write	mod_rewrite	logging	and	debugging	chapter
Write	mod_rewrite	examples	chapter
Write	Content	Munging	chapter
Write	Conditional	Configuration	chapter
Provide	issue	tracker	where	people	can	log	errata
Convert	all	LaTeX	to	RST
Verify	all	desired	formats	(pdf,	html,	epub)
Automated	publishing	tools
Asciidoctor-pdf	doesn't	do	footnotes	right.	Either	they	need	to	fix	this,	or	I	need	to	remove	all	footnotes.
Update/Replace	the	second	on	regex	testing	tools,	since	these	appear	and	vanish	pretty	quickly.

REVISION	HISTORY

0.00	Started	March	7,	2013.	Started	TOC	and	a	little	of	the	initial	text.	Published	HTML	version	to	website	at
http://rewrite.rcbowen.com/
0.01	March	12,	2013.	Initial	publish	to	Amazon.com	in	Kindle	form.
0.02	March	18,	2013.	Munged	the	TOC	around	a	bit	to	make	the	chapters	less	crowded.	Will	end	up	with	some	sparse
chapters	initially.	So	what.
0.03	March	18,	2013.	Added	a	bunch	about	flags.	Completed	reorg	of	TOC.	I	hope.
...
0.12	April	16,	2013.	Started	RewriteMap	stuff,	and	various	other	tweaks	and	fixes.
0.15	August	10,	2013.	Attended	Flock.	Decided	to	convert	all	LaTeX	to	rST	instead.	Many	benefits,	but	quite	a	bit	of	work.
Should	have	a	rebuild	in	the	next	few	days.
0.20	August	12,	2013.	Completed	conversion	from	LaTeX	to	rST.	I'm	sure	there's	still	some	orts	here	and	there,	but	it's	good
enough	to	tag.

0.30	-	Christmas	2017.	Yet	another	conversion,	this	time,	to	ASCIIdoc.	Borrowed	tools	and	templates	from
https://github.com/akosma/eBook-Template	to	get	started.	Website	has	been	moved	to	http://mod-rewrite.org.	We'll	start
publising	it	there	again	once	we	have	a	shippable	version.

0.31	-	Christmas	2018.	Will	the	format	changing	never	end?	Converted	to	MarkDown	and	GitBook.
https://toolchain.gitbook.com/	But	I'm	starting	to	remember	that	I	rejected	GitBook	because	it	doesn't	seem	like	there's	a	way
to	generate	an	index	easily.

0.32	-	The	brief	experiement	with	going	back	to	Markdown	abandoned,	since	Gitbook	supports	asciidoc.	I'm	going	to	focus
on	writing,	and	figure	out	indexing	at	some	later	date.

Appendix

55

http://rewrite.rcbowen.com/
https://github.com/akosma/eBook-Template
http://mod-rewrite.org
https://toolchain.gitbook.com/

	Introduction
	Regular Expressions
	URL Mapping
	Rewrite Logging
	RewriteRule flags
	RewriteCond
	RewriteMap
	Proxying with mod_rewrite
	Virtual Hosts with mod_rewrite
	Access Control with mod_rewrite
	If, and other Configuration Configuration
	Content Munging Modules
	Recipes
	Appendix

